NASA-TM-209370, Version 2.0

[image: image1.png]

NASA Software Training Course Listing

A Product of the NASA Software Working Group

National Aeronautics and

Space Administration

Software Working Group

http://www.ivv.nasa.gov/SWG/

 EMBED Word.Picture.8

August 1999

Acknowledgments

The NASA Software Working Group (SWG) would like to acknowledge the assistance of those individuals who aided in the preparation of this document. The SWG Training Subgroup members were instrumental in obtaining source data and orchestrating the format of the document, the Science and Engineering Technical Assessments (SETA) contractor assisted in the editing, critiquing and expansion of the text, and the course providers assisted in detailing the training courses listed.

Table of Contents

8Foreword

Disclaimer
8
The Course Providers
8
The National Aeronautics and Space Administration (NASA)
8
The Software Program Managers Network (SPMN)
9
The Systems Technology Institute (STI)
9
The Software Engineering Institute (SEI)
9
The Software Productivity Consortium (SPC)
10
National Institute of Standards and Technology (NIST)
10
Computer Security Institute (CSI)
11
Course Matrix
12
Instructional Key to the Course Matrix
12
Courses Matrix By Subject Area
12
Subject Area Definitions:
17
Extra Definitions
21
1.
Integrated Software Management (L3 KPA)
22
1.1.
NASA
22
1.2.
SPMN
22
1.2.1.
Software Best Practices Overview
22
1.2.2.
Advanced Software Engineering Management
23
1.2.3.
Software Best Practices Overview
23
1.2.4.
Software Engineering Management
23
1.2.5.
Software Survival Skills for AIS Projects
24
1.3.
STI
24
1.4.
SEI
24
1.5.
SPC
24
2.
Inter-group Coordination (L3 KPA)
24
2.1.
NASA
24
2.2.
SPMN
25
2.2.1.
IPT’s and People-aware Management
25
2.3.
STI
25
2.4.
SEI
25
2.5.
SPC
25
3.
Organizational Process Definition/Focus (L3 KPA)
25
3.1.
NASA
25
3.2.
SPMN
25
3.2.1.
Methods for Managers
25
3.3.
STI
26
3.4.
SEI
26
3.4.1.
Defining Software Processes
26
3.5.
SPC
26
4.
Software Acquisition Management
26
4.1.
NASA
26
4.1.1.
Software Acquisition Management
26
4.2.
SPMN
27
4.2.1.
Contracting for Software
27
4.2.2.
Software Test and Integration: DT&E and OT&E
27
4.2.3.
Advanced Software Engineering Management
28
4.3.
STI
28
4.4.
SEI
28
4.4.1.
Introduction to the Software Acquisition Capability Maturity Model
28
4.5.
SPC
28
5.
Software Configuration Management (L2 KPA)
28
5.1.
NASA:
29
5.1.1.
Configuration Management
29
5.2.
SPMN
29
5.2.1.
Software Configuration Management and Control: Integrating CM into the Project Environment
29
5.3.
STI
30
5.3.1.
Practical Implementation of Software Configuration Management
30
5.3.2.
Software Configuration Management - A Management Overview
30
5.4.
SEI
30
5.5.
SPC
30
6.
Software IV&V
31
6.1.
NASA
31
6.1.1.
S/W Independent Verification and Validation Tutorial
31
6.2.
SPMN
31
6.2.1.
Independent Verification and Validation: What Is It and How Is It Done?
31
6.3.
STI
32
6.3.1.
Software IV&V.
32
6.4.
SEI
32
6.5.
SPC
32
7.
Software Peer Reviews (L3 KPA)
32
7.1.
NASA
32
7.1.1.
Software Development Formal Inspections
32
7.1.2.
Executive Briefing on Formal Inspection
33
7.1.3.
Formal Inspections for Non-Software Professionals
33
7.2.
SPMN
33
7.2.1.
Defect Tracking: Fagan Inspections and Peer Reviews
33
7.3.
STI
34
7.4.
SEI
34
7.5.
SPC
34
8.
Software Process Improvement
34
8.1.
NASA:
34
8.1.1.
Software Process Improvement
34
8.1.2.
Software Process Improvement
34
8.2.
SPMN
35
8.2.1.
Software Quality Management
35
8.2.2.
Project Planning: Work Definition and Allocation, Estimation, Scheduling, and Earned Value
36
8.2.3.
Metrics and Measures
36
8.2.4.
Metrics-Based Scheduling and Management
36
8.2.5.
Project Planning: Work Definition and Allocation, Estimation, Scheduling, and Earned Value
37
8.2.6.
The SEI CMM: What Is It?
37
8.3.
STI
37
8.3.1.
ISO 9000 for Software Organizations
37
8.4.
SEI:
38
8.4.1.
Managing Technological Change
38
8.4.2.
Introducing New Software Technology
38
8.4.3.
Executive Software Process Improvement Overview Seminar
39
8.4.4.
Personal Software Process Executive Seminar
39
8.4.5.
Personal Software Process Courses
40
8.4.6.
Consulting Skills Workshop
40
8.4.7.
Introduction to the People Capability Maturity Model
41
8.4.8.
Introduction to the Capability Maturity Model for Software
41
8.5.
SPC
42
8.5.1.
SPC (CMM) Overview
42
9.
Software Process Measurement
42
9.1.
NASA:
42
9.1.1.
Software Measurement for Practitioners
42
9.2.
SPMN
42
9.2.1.
Project Planning: Work Definition and Allocation, Estimation, Scheduling, and Earned Value
43
9.2.2.
Metrics-Based Scheduling and Management
43
9.3.
STI
43
9.3.1.
SW Process Measurement
43
9.4.
SEI:
44
9.4.1.
Implementing Goal-Driven Software Measurement
44
9.5.
SPC
44
9.5.1.
Overview of Software Measurement and the Capability Maturity Model
44
10.
Software Product Engineering (L3 KPA)
45
10.1.
NASA:
45
10.1.1.
Introduction to Software Engineering
45
10.1.2.
Writing High Quality Requirement Specifications
45
10.1.3.
Object Oriented Software Design/Development
46
10.1.4.
System Requirements (REQ)
46
10.2.
SPMN
47
10.2.1.
Software Architecture Requirements: The DII COE and JTA
47
10.2.2.
Software Requirements Engineering
48
10.2.3.
Software Engineering Fundamentals
48
10.2.4.
Testing: Evaluating the Product
49
10.2.5.
Testing: Evaluating the Product
49
10.3.
STI
49
10.3.1.
SW Requirements Management.
49
10.3.2.
Structured Software Testing
50
10.3.3.
Software Reuse: Introducing Reuse into Software Development
50
10.4.
SEI:
51
10.4.1.
Domain Engineering: A Model-Based Approach
51
10.5.
SPC
51
10.5.1.
Reuse Adoption
51
11.
SW Project Management
52
11.1.
NASA
52
11.1.1.
Introduction To ISO 9000-1 Quality Management Standards
52
11.1.2.
Metrics for Quality Assurance and Risk Assessment
52
11.2.
SPMN
53
11.2.1.
Software Survival Skills for AIS Projects
53
11.2.2.
Advanced Software Engineering Management
53
11.2.3.
Software Engineering Management
54
11.2.4.
Metrics-Based Scheduling and Management
54
11.2.5.
Project Planning: Work Definition and Allocation, Estimation, Scheduling, and Earned Value
54
11.2.6.
Software Project Planning: Earned Value Management
55
11.2.7.
Metrics-Based Scheduling and Management
55
11.3.
STI
55
11.3.1.
Software Project Planning and Management
55
11.4.
SEI
56
11.5.
SPC
56
12.
Software Quality Assurance (L2 KPA)
56
12.1.
NASA
56
12.1.1.
Software Assurance
56
12.2.
SPMN
57
12.2.1.
Software Quality Management
57
12.3.
STI
57
12.3.1.
Software Quality Assurance and Improvement
57
12.4.
SEI
58
12.5.
SPC
58
13.
Software Reliability
58
13.1.
NASA:
58
13.1.1.
Software Reliability
58
13.2.
SPMN
59
13.3.
STI
59
13.3.1.
Software Safety and Reliability Workshop
59
13.4.
SEI
59
13.5.
SPC
59
14.
Software Risk Management
59
14.1.
NASA
59
14.1.1.
Continuous Risk Management: An Overview
59
14.1.2.
Continuous Risk Management
60
14.1.3.
Metrics for Quality Assurance and Risk Assessment
60
14.2.
SPMN
61
14.2.1.
Risk Management and Metrics: An Integrated Approach
61
14.2.2.
Risk Management and Metrics: An Integrated Approach
61
14.2.3.
Risk Management and Metrics: An Integrated Approach
61
14.2.4.
The Software Project Risk Assessment Process: Risk Assessment Planning and Execution
62
14.3.
STI
62
14.3.1.
Software Risk Analysis and Management
62
14.4.
SEI:
63
14.4.1.
Continuous Risk Management
63
14.5.
SPC
63
15.
Software Safety
63
15.1.
NASA:
63
15.1.1.
Software Safety Manager/Overview Course
63
15.1.2.
Software Safety Practitioner Course
64
15.2.
SPMN
64
15.2.1.
Software Safety Process
64
15.3.
STI
64
15.4.
SEI
65
15.5.
SPC
65
16.
S/W Maintenance and Sustaining Engineering
65
16.1.
NASA
65
16.2.
SPMI
65
16.3.
STI
65
16.4.
SEI
65
16.5.
SPC
65
17.
Software Verification and Validation
65
17.1.
NASA:
65
17.1.1.
The Practical Application of Formal Methods for the Specification, Analysis, and Verification of Software Systems
65
17.1.2.
Formal Methods for Specification of Software and Computer Systems - A Management Overview
66
17.1.3.
PVS Training Class
66
17.2.
SPMI
67
17.3.
STI
67
17.4.
SEI
67
17.4.1.
None
67
17.5.
SPC
67
18.
Systems Engineering
67
18.1.
NASA
67
18.1.1.
Systems Engineering (SE)
67
18.1.2.
Effective Systems Specifications
68
18.2.
SPMN
69
18.2.1.
Systems Engineering Management
69
18.3.
STI
69
18.3.1.
Systems Engineering
69
18.4.
SEI
69
18.5.
SPC
69
19.
Software/Computer Security
70
19.1.
NASA:
70
19.1.1.
Computer Security Training
70
19.2.
SPMN
70
19.2.1.
Security in a Software Project Environment
70
19.3.
STI
71
19.4.
SEI
71
19.5.
SPC
71
19.6.
Other
71
19.6.1.
NIST Computer Security Resource Clearinghouse
71
19.6.2.
Computer Security Institute (CSI)
72
20.
Suggestions for Improvements Form
75

NASA Software Training Course Listing
Foreword

The "NASA Software Training Course Listing" details courses available from a core group of providers, and details their usefulness in the context of Software Development, Software Project Management, and Software Assurance Engineering. It is intended to aid personnel in researching which course best fits an area where training is needed, and to aid in contacting the appropriate course provider. The "NASA Software Training Course Listing" provides information for managers and practitioners who are interested in increasing their level of knowledge in a number of Software Subject Areas. These Software Subject Areas are based upon the Software Engineering Institute's (SEI) Capability Maturity Model (CMM) Key Process Areas (KPAs).

Disclaimer

This document is a product of the NASA Software Working Group (SWG) Training Subgroup and was cooperatively developed by SWG representatives from participating NASA Centers. The NASA SWG does not intend to endorse one or another course provider by cataloguing the courses listed herein. Descriptions and other data concerning course listings are authored by the individual course providers and do not necessarily reflect the opinion or assessment of any NASA personnel. The "NASA Software Training Course Listing" is a "living" document, intended to be a revisable, evolving guide that invites new input and facilitates periodic maintenance of the information captured. In the interest of revision, a Change Request Form is included at the end of this document.

The Course Providers

The National Aeronautics and Space Administration (NASA)

For more information about NASA courses, contact your Center's designated Software Working Group Representative. If you are not sure who the representative for your Center is, visit the Software Working Group member's list on the web at: http://www.ivv.nasa.gov/SWG/SWG_official_members.html.

The Software Program Managers Network (SPMN)

SPMN courses are offered through Integrated Computer Engineering, Inc., Computers & Concepts Associates Division. All courses are designed as "on-site" training workshops; presented at the client's facility or local hotel conference room. Prices are based on a minimum of 20 seats. Federal customers qualify for lower GSA/FEDSIM rates. Training funds can be placed on the GSA/FEDSIM contract and remain there until the customer charge against it for desired training or services.

For more information about custom course design, scheduling and prices, send your name, organization, phone number and a detailed description of your training interests to: candca@candca.com

Website: http://www.spmn.com/

The System Technology Institute (STI)

The System Technology Institute is a private organization dedicated to providing service to the software technology community in government and industry. Training is available in the areas of software engineering, management and assurance by technical professionals. The courses emphasize the application of proven best practices to produce reliable software on schedule and within budget. STI courses reflect the widespread acceptance of the Software Engineering Institute's Capability Maturity Model (CMM), a framework that has become the government and industry standard for measuring the capability of software development organizations.

Systems Technology Institute (STI)

P.O. Box 6907

Malibu, California 90264-6907

Phone: (310) 457-0851

Web Address: http://www.stitraining.com/

E-mail: mbsanson@aol.com
The Software Engineering Institute (SEI)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S. Department of Defense through the Office of the Under Secretary of Defense for Acquisition and Technology [OUSD (A&T)]. The SEI contract was competitively awarded to Carnegie Mellon University in December 1984. It is staffed by technical and administrative professionals from government, industry, and academia.

To obtain more information about SEI public courses and on-site training, contact:

Course Information

Phone and Voice Mail: 412 / 268-7702.

E-mail: course-info@sei.cmu.edu

Website: http://www.sei.cmu.edu

The Software Productivity Consortium (SPC)

NASA's membership in the Software Productivity Consortium provides access to SPC Training. Training mechanisms include videoconferences and live satellite feeds. The Consortium also packages courses into modules, as requested by members with more targeted training needs. Most courses can be tailored, in length and content.

To reduce training costs, some of the training classes are held at regional locations. These locations will be determined by user demand.

For more information contact:

Software Productivity Consortium

SPC Building

2214 Rock Hill Road

Herndon, VA 20170-4227

E-mail: ask-spc@software.org

Phone: 703-742-7211

Website: http://www.stacorp.com/draft/spc.htm

National Institute of Standards and Technology (NIST)

NIST courses are offered through the Computer Security Resource Clearinghouse (CSRC).

For more information contact:

NIST

100 Bureau Drive

Gaithersburg, MD 20899-0001

Public Inquiries Unit

Phone: (301) 975-NIST

Website: http://csrc.nist.gov/training/welcome.html

Computer Security Institute (CSI)

CSI information security seminars are generally two days long. All CSI classes can be tailored. On-site training is available.

For more information, contact:

Director of Education

John O'Leary

Computer Security Institute

600 Harrison Street

San Francisco, CA 94107.

Phone: 214-596-6384

E-mail: jol2304@aol.com

Website: http://www.gocsi.com/wkshop.shtml

For information pertaining specifically to on-site training, contact:

Pam Salaway

Phone: (516) 878-2205

Course Matrix

Instructional Key to the Course Matrix

The matrix following provides a concise summary of the courses in the "NASA Software Training Course Listing". The course numbers entered into the matrix are traceable to Sections 1 through 19 of the "NASA Software Training Course Listing". The abbreviations represent the title of the Course Provider through whom the training is available.

Courses are organized according to which Software Subject Area they address. Software Subject Areas are based upon the Software Engineering Institute's (SEI) Capability Maturity Model (CMM) Key Process Areas (KPAs). Within each Software Subject Area, the matrix is also broken-out by whether the course is intended for Software Project Managers, Developers/Engineers, Software Assurance Engineers or some combination of the three. Furthermore, each of these headings is subdivided into courses intended to provide an Overview or Practitioner-oriented level of instruction. In most cases an Overview course is one having duration of four hours or less, while a course intended for a Practitioner will generally run for four or more hours. Courses that fulfill more than one matrix area, are listed in each of the areas matched.

 Courses Matrix by Subject Area

No.
SW Subject Area
KPA
SW Project Manager (M)

Developer/Eng. (D)

S/W Assurance Eng. (a)

Overview
Practitioner
Overview
Practitioner
Overview
Practitioner

1

Integrated SW Management
L3
1.2.1 SPMN

1.2.2 SPMN

1.2.5 SPMN
1.2.1 SPMN
1.2.3 SPMN

1.2.4 SPMN
1.2.1 SPMN
1.2.3 SPMN

1.2.4 SPMN

2

Inter-group Coordination
L3

2.2.1 SPMN

No.
SW Subject Area
KPA
SW Project Manager (M)
Developer/Eng. (D)
S/W Assurance Eng. (a)

Overview
Practitioner
Overview
Practitioner
Overview
Practitioner

3
Organizational Process Definition/Focus
L3

3.2.1 SPMN

3.4.1 SEI

4

SW Acquisition Management

4.2.1 SPMN

4.2.2 SPMN
4.1.1 NASA

4.2.3 SPMN

4.4.1 SEI
4.2.1 SPMN

4.2.2 SPMN

4.2.1 SPMN

4.2.2 SPMN

5

SW Configuration Management
L2
5.3.2 STI
5.2.1 SPMN

5.3.1 STI
5.3.2 STI
5.2.1 SPMN

5.3.1 STI
5.1.1 NASA

5.3.2 STI
5.2.1 SPMN

5.3.1 STI

6

SW IV&V

6.1.1 NASA
6.2.1 SPMN

6.3.1 STI

6.2.1 SPMN

6.3.1 STI

6.2.1 SPMN

6.3.1 STI

7

SW Peer Reviews (Includes Formal Inspections)
L3
7.1.2 NASA

 7.1.3 NASA
7.2.1 SPMN

7.1.1 NASA
7.1.2 NASA

7.1.3 NASA
7.2.1 SPMN

7.1.1 NASA

7.1.2 NASA

7.1.3 NASA
7.2.1 SPMN

7.1.1 NASA

8
SW Process Improvement

8a
SW Process Improvement

8.2.6 SPMN

8.4.3 SEI

8.4.4 SEI

8.5.1 SPC
8.1.1 NASA

8.3.1 STI
8.5.1 SPC
8.1.1 NASA

8.4.5 SEI

8.3.1 STI
8.5.1 SPC
8.1.1 NASA

8.3.1 STI

8b
Defect Prevention
L3

8.2.1 SPMN

8.2.1 SPMN

8c
SW Process Change Management
L5

8.1.1 NASA

8.1.2 NASA

8.4.6 SEI

8.4.7 SEI

8.4.8 SEI

8.1.1 NASA

8.1.2 NASA

8.1.1 NASA

8.1.2 NASA

8d
Quantitative Process Management
L4
8.2.2 SPMN

8.2.3 SPMN
8.2.4 SPMN

8.2.5 SPMN
8.2.3 SPMN
8.2.4 SPMN

8e
Organizational Capability Assessment

8.1.2B NASA

8.4.8 SEI

No.
SW Subject Area
KPA
SW Project Manager (M)
Developer/Eng. (D)
S/W Assurance Eng. (a)

Overview
Practitioner
Overview
Practitioner
Overview
Practitioner

8f
Software Technology Change Management
L5

8.4.1 SEI

8.4.2 SEI

9

SW Process Measurement (Includes Modeling)

9.5.1 SPC
9.1.1 NASA

 9.2.1 SPMN

9.2.2 SPMN

9.3.1 STI

 9.4.1 SEI

9.4.3 SEI

9.1.1 NASA

9.2.2 SPMN

9.3.1 STI

9.1.1 NASA

9.3.1 STI

10
SW Product Engineering

10a
SW Product Engineering
L3
10.1.1 NASA
10.2.3 SPMN

10.2.3 SPMN
10.1.1 NASA
10.2.3 SPMN

10b

SW Design Methodologies (Incl. architecture, reuse, & verification)

10.2.1 SPMN

10.4.1 SEI

10.3.3 STI

10.1.3 NASA 10.5.1 SPC

10.2.1 SPMN

10.4.1 SEI

10.3.3 STI

10.1.3 NASA 10.5.1 SPC

10.3.3 STI

10c
SW Requirements Development/ Management (Incl. documentation & traceability)
L2

10.1.2 NASA

10.1.4 NASA

10.2.2 SPMN

10.3.1 STI

10.1.2 NASA

10.1.4 NASA

10.2.2 SPMN

10.3.1 STI

10.1.2 NASA

10.1.3 NASA

10.1.4 NASA

10.3.1 STI

10d
Software Testing

10.2.3 NASA
10.2.5 SPMN

10.3.2 STI
10.2.4 SPMN
10.2.5 SPMN

10.3.2 STI
10.2.4 SPMN
10.2.5 SPMN

10.3.2 STI

No.
SW Subject Area
KPA
SW Project Manager (M)
Developer/Eng. (D)
S/W Assurance Eng. (a)

Overview
Practitioner
Overview
Practitioner
Overview
Practitioner

11a

SW Project Management

11.2.1 SPMN

11.2.2 SPMN
11.3.1 STI

11.2.1 SPMN

11.2.3 SPMN

11.3.1 STI

11.3.1 STI

11b
SW Project Tracking & Oversight
L2

11.2.4 SPMN

11.2.5 SPMN

11.2.6 SPMN

11.2.4 SPMN

11c
SW Quality Management
L4
11.1.2 NASA
11.2.7 SPMN

11.1.1 NASA
11.1.2 NASA
11.2.7 SPMN

11.1.1 NASA

11.1.2 NASA
11.1.1 NASA

11.1.2 NASA

12

Software Quality Assurance
L2
12.1.1 NASA
12.2.1 SPMN

12.3.1 STI
12.1.1 NASA
12.3.1 STI
12.1.1 NASA
12.2.1 SPMN

12.3.1 STI

13

SW Reliability

13.3.1 STI

13.1.1 NASA

13.3.1 STI

13.1.1 NASA

13.3.1 STI

14

SW Risk Management

14.1.1 NASA

14.1.3 NASA

14.2.1 SPMN
14.1.2 NASA

14.2.2 SPMN

14.3.1 STI

14.4.1 SEI
14.1.1 NASA

14.1.2 NASA

14.2.3 SPMN

14.3.1 STI
14.1.1 NASA

14.1.2 NASA 14.2.4 SPMN

14.3.1 STI

15

SW Safety

15.1.1 NASA
15.2.1 SPMN
15.1.1 NASA
15.1.2 NASA
15.1.1 NASA
15.1.2 NASA

16

SW Maintenance and Sustaining

Engineering (Includes re-engineering & reverse engineering)

No.
SW Subject Area
KPA
SW Project Manager (M)
Developer/Eng. (D)
S/W Assurance Eng. (a)

Overview
Practitioner
Overview
Practitioner
Overview
Practitioner

17a

Software Verification and Validation

17b
Formal Methods

17.1.2 NASA

17.1.1 NASA

17.1.3 NASA

17.1.1 NASA

17.1.3 NASA

18 (See 10)
Systems Engineering

18.1.1 NASA

18.1.2 NASA

18.2.1 SPMN

18.3.1 STI

18.1.1 NASA

18.2.1 SPMN

18.3.1 STI

18.1.1 NASA

18.3.1 STI

19
Software Security

19.2.1 SPMN

19.1.1 NASA 19.2.1 SPMN

19.6.1 NIST

19.6.2 CSI

Subject Area Definitions:

Defect Prevention (CMM Level 5) - Defect Prevention involves analyzing defects that were encountered in the past and taking specific actions to prevent the occurrence of those types of defects in the future.

Independent Verification and Validation (IV&V) - Verification and validation performed by an organization that is technically, managerially, and financially independent of the development organization. 'IEEE Standard Glossary of Software Engineering Terminology', American National Standard (ANSI), IEEE Std. 610.12-1990.

Integrated Software Management (CMM Level 3) - Integrated Software Management involves developing the project’s defined software process and managing the software project using this defined software process.

Intergroup Coordination (CMM Level 3) - Intergroup Coordination involves the software engineering group’s participation with other project engineering groups to address system-level requirements, objectives, and issues.
Maintenance- (1) The process of modifying a software system or component after delivery to correct faults, improve performance or other attributes, or adapt to a changed environment. (2) The process of retaining a hardware system or component in, or restoring it to, a state in which it can perform its required functions.

Organization Process Definition (CMM Level 3) - Organizational Process Defin8ition involves developing and maintaining the organization’s standard software process, along with related process assets.

Organization Process Focus (CMM Level 3) - Organizational Process Focus involves developing and maintaining an understanding of the organization’s and project’s software processes and coordinating the activities to assess, develop, maintain, and improve these processes.

Organizational Capability Assessment: A SEI assessment of what CMM level your project and/or organization is currently at.

Peer Reviews (CMM Level 3) - Peer Reviews involve a methodical examination of software work products by the producers’ peers (at LaRC) to identify defects and areas where changes are needed.
Process Change Management (CMM Level 5) - Process Change Management involves defining process improvement goals and with senior management sponsorship, proactively and systematically identifying, evaluating, and implementing improvements to the organization’s standard software process and the projects’ defined software processes on a continuous basis.

Quantitative Process Management (CMM Level 4) - Quantitative Process Management involves establishing goals for the performance of the project’s defined software process, taking measurements of process performance, analyzing them, and making adjustments to maintain process performance within acceptable limits.

Reliability - The ability of a system or component to perform its required function under stated conditions for a specified period of time. 'IEEE Standard Glossary of Software Engineering Terminology', American National Standard (ANSI), IEEE Std. 610.12-1990.

Requirements Management (CMM Level 2) - The purpose of Requirements Management is to establish and maintain an agreement with the customer on the requirements for the software project.

Risk management - Is a continuous process that identifies risks; analyzes their impact and prioritizes them; develops and carries out plans for risk mitigation, acceptance, or other action; tracks risks and the implementation of mitigation plans; supports informed, timely, and effective decisions to control risks and mitigation plans; and assures that risk information is communicated among all levels of a program/project. Risk management begins in the formulation phase with an initial risk identification and development of a Risk Management Plan and continues throughout the product life cycle through the disposition and tracking of existing and new risks. ‘NASA Program and Project Management Processes and Requirements’, NPG 7120.5a, 1998

Software Configuration Management (CMM Level 2) - Software Configuration Management involves identifying configuration items for the software project, controlling these configuration items and changes to them, and recording and reporting status and change activity for these configuration items.

Software Design Methodologies –Software Design Methodology - A guideline identifying how to design software. As a process, a methodology is a practical set of procedures that facilitate the design of software. (IEEE, Std 1016.1-1993) A set of orderly techniques and procedures used to derive a software design.

Software Process Improvement – The continual and iterative improvement of both the software process and products through the use of project experiences. (Software Process Improvement Guidebook, NASA-GB-001-95)
Software Process Measurement – The collection and evaluation of quantitative data related to the activities, methods, practices, and transformations that people use to develop and maintain software.

Software Product – (1) The complete set of computer programs, procedures, and possibly associated documentation and data designated for delivery to a user. (2) Any of the individual items in (1) (IEEE Std. 610.12-1990).

Alternate Definition

Software or associated information created, modified, or incorporated to satisfy the software requirements. Examples include plans, requirements, design, code, databases, test information, and manuals. (Software Management Guidebook, NASA-GB-001-96)
Software Project Management - The process of planning, organizing, staffing, monitoring, controlling, and leading a software project. (IEEE, Std 1058.1-1987) The leadership and accountability for allocating work, budgeting resources, setting schedules, performing evaluations and delivering a software product. Management responsibility includes monitoring and taking corrective action to ensure that the software product meets the required functional, quality, safety, and reliability characteristics.
Software Project Planning (CMM Level 2) - Software Project Planning involves developing estimates for the work to be performed, establishing the necessary commitments, and defining the plan to perform the work.

Software Project Tracking & Oversight (CMM Level 2) - Software Project Tracking and Oversight involves tracking and reviewing the software accomplishments and results against documented estimates, commitments, and plans and adjusting those plans based on the actual accomplishments and results.

Software Quality Assurance (CMM Level 2) - Software Quality Assurance involves reviewing and auditing the software products and activities to verify that they comply with the applicable procedures and providing the software project with the results of these reviews and audits.

Software Quality Management (CMM Level 4) - Software Quality Management involves defining quality goals for the software products, establishing plans to achieve these goals, and monitoring and adjusting the software plans, software work products, activities, and quality goals to satisfy the needs and desires of the customer and end user for high quality products.

Software Requirements Management – The identification of needed capabilities or conditions, allocation of related resources, monitoring of their progress toward implementation, and documenting the evidence of fulfilled requirements in the software product.
Software Safety – The application of the disciplines of system safety engineering techniques throughout the software life cycle to ensure that the software takes positive measures to enhance system safety and that errors that could reduce system safety have been eliminated or controlled to an acceptable level of risk. (NASA-STD-8719.13A)
Software Security – The prevention of unauthorized access and malicious actions to a computer based system and its’ associated information.

Software Sustaining Engineering – Maintenance and enhancement of an operational software product. (Software Management Guidebook, NASA-GB-001-96)
Systems Engineering – Systems engineering is an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs. Systems engineering encompasses (a) the technical efforts related to the development, manufacturing, verification, deployment, operations, support) disposal of, and user training for, system products and processes; (b) the definition and management of the system configuration; (c) the translation of the system definition into work breakdown structures; and (d) development of information for management decision making. (ElA/IS-632)

Technology Change Management (CMM Level 5) - Technology Change Management involves identifying, selecting, and evaluating new technologies, and incorporating effective technologies into the organization.

Testing - The process of operating a system or component under specified conditions, observing or recording the results, and making an evaluation of some aspect of the system or component. (2) The process of analyzing a software item to detect the differences between existing and required conditions (that is, bugs) and to evaluate the features of the software items. 'IEEE Standard Glossary of Software Engineering Terminology', American National Standard (ANSI), IEEE Std. 610.12-1990.

Verification and Validation (V&V) - The process of determining whether the requirements for a system or component are complete and correct, the products of each development phase fulfill the requirements or conditions imposed by the previous phase, and the final system or component complies with the specified requirements. 'IEEE Standard Glossary of Software Engineering Terminology', American National Standard (ANSI), IEEE Std. 610.12-1990.

 Extra Definitions

Design - (1) The process of defining the architecture, components, interfaces, and other characteristics of a system or component. (2) The result of the process in (1). 'IEEE Standard Glossary of Software Engineering Terminology', American National Standard (ANSI), IEEE Std. 610.12-1990.

Implementation - (1) The process of translating a design into hardware components, software components, or both. (2) The result of the process in (1). 'IEEE Standard Glossary of Software Engineering Terminology', American National Standard (ANSI), IEEE Std. 610.12-1990.

Requirement - (1) A condition or capability needed by a user to solve a problem or achieve an objective. (2) A condition or capability that bust be met or possessed by a system or system component to satisfy a contract, standard, specification or other formally imposed documents. (3) A documented representation of a condition or capability as in (1) or (2). 'IEEE Standard Glossary of Software Engineering Terminology', American National Standard (ANSI), IEEE Std. 610.12-1990.

Software Subcontract Management (CMM Level 2) - Software Subcontract Management involves selecting a software subcontractor, establishing commitments with the subcontractor, and tracking and reviewing the subcontractor's performance and results. (Note: NASA can be thought of as the contractor in this situation and support contractors such as CSC and TRW are considered subcontractors.)

Software Product Engineering (CMM Level 3) - Software Product Engineering involves performing the engineering tasks to build and maintain the software using the defined software process and appropriate methods and tools.
Training Program (CMM Level 3) - Training Program involves first identifying the training needed by the organization, projects, and individuals, then developing or procuring training to address the identified needs.
Courses

1. Integrated Software Management (L3 KPA)

1.1. NASA

None

1.2. SPMN

1.2.1. Software Best Practices Overview

Instructional Method: lecture, video, guided discussion, case study
Category: Overview
Duration: 4 hours

Audience: Manager
Description: Features the nine Principal Best Practices, and shows managers and engineers how to implement them on real software projects. The Best practices are distilled from years of experience managing, conducting and assessing software projects. The Best Practices bring order, predictability, and higher levels of productivity and quality to software development. By implementing them, organizations can quickly and cost-effectively improve their ability to deliver quality software on time and within budget. At the end of this course participants should be able to:

· Explain each of the Best Practices

· Initiate a Best Practices implementation program within their organization

1.2.2. Advanced Software Engineering Management

Instructional Method: 19 modular workshops using lecture, video, guided discussion, case study
Category: Practitioner

Duration: 12 days

Audience: Manager
Description: A comprehensive and intensive course which provides in-depth coverage of military and commercial, standards, practices, methodologies and techniques necessary for planning and managing large-scale software acquisition and development projects. The focus is on the elimination of cost and schedule overruns through the identification and management of program risks, and an emphasis on Software Best Practices. At the end of this course participants should be able to plan and implement software acquisition and development programs which meet cost, schedule and technical performance targets.

1.2.3. Software Best Practices Overview

Instructional Method: lecture, video, guided discussion and case study
Category: Practitioner

Duration: 1.5 days

Audience: Developer, Assurance Engineer
Description: Features the nine Principal Best Practices, and shows managers and engineers how to implement them on real software projects. The Best practices are distilled from years of experience managing, conducting and assessing software projects. The Best Practices bring order, predictability, and higher levels of productivity and quality to software development. By implementing them, organizations can quickly and cost-effectively improve their ability to deliver quality software on time and within budget. At the end of this course participants should be able to:

· Explain each of the Best Practices

· Initiate a Best Practices implementation program within their organization

1.2.4. Software Engineering Management

Instructional Method: lecture, video, guided discussion, and case study
Category: Practitioner

Duration: 5 days

Audience: Developer, Assurance Engineer
Description: Provides system developers with an overview of the tools and methods appropriate to development and maintenance of software applications including programming languages, language bindings and object code linking, and Computer Aided Software Engineering (CASE) environments/tools. This course focuses on the application of a systematic, disciplined, and quantifiable approach to the development, operation and maintenance of software. Cultural aspects of software engineering are covered.

1.2.5. Software Survival Skills for AIS Projects

Instructional Method: lecture, guided discussion and case studies

Category: Practitioner

Duration: 1 day

Audience: Manager

Description: Makes extensive use of project scenarios based on real cases to demonstrate how to plan and manage Automated Information Systems projects. It covers business management, planning, requirements, tools and methods, CM, testing, quality and risk management. It focuses on the recognition of common problems and the application of proven solutions, but stresses the need to avoid a cookbook approach. At the end of this course participants should be able to:

· Understand and use terminology common to software projects to discuss management issues

· Explain software engineering concepts, processes, practices and standards from a management perspective

· Recognize common problems and pitfalls in projects

· Tailor standard approaches and solutions to their own organization and project

1.3. STI

None

1.4. SEI

None

1.5. SPC

None

2. Inter-group Coordination (L3 KPA)

2.1. NASA

None

2.2. SPMN

2.2.1. IPT’s and People-aware Management

Instructional Method: Lecture, video, and guided discussion.

Category: Practitioner

Duration: 2 days

Audience: Manager

Description: Provides managers and supervisors the tools and methods needed to effectively exploit the IPT organization in developing systems. Addresses the pitfalls of this powerful organizational structure and outlines ways to avoid them.

2.3. STI

None

2.4. SEI

None

2.5. SPC

None

3. Organizational Process Definition/Focus (L3 KPA)

3.1. NASA

None

3.2. SPMN

3.2.1. Methods for Managers

Instructional Method: lecture and guided discussion
Category: Practitioner

Duration: 1.5 days

Audience: Manager
Description: Provides a management summary of the methods and techniques used in all phases of the acquisition and development of large-scale software systems. At the end of this course participants will be able to:

· Explain a broad spectrum of software engineering policies, processes, practices, methods and standards from a management perspective

· Make more informed management decisions for software projects

3.3. STI

None

3.4. SEI

3.4.1. Defining Software Processes

Instructional Method: lecture, guided discussion, group exercises

Category: Practitioner

Duration: 3.5 days

Audience: Manager

Description: In this workshop, members of process action teams (PATs) will learn the basic skills and knowledge required to effectively begin defining and improving an organization’s software processes. Participants acquire these basic skills through a series of hands-on learning experiences designed to simulate real-world situations and problems. The workshop will help PAT members to overcome stalled progress, difficulties understanding management expectations, problems communicating their needs, and resistance from the organization. Course topics include process management, process modeling methods, PAT project management, business context setting, measuring change, and performance measurement. After taking the workshop, participants will be more effective at generating a process baseline, establishing an improvement target, computing and tracking return on investment, piloting processes changes, and installing process solutions.

3.5. SPC

None

4. Software Acquisition Management

4.1. NASA

4.1.1. Software Acquisition Management

Instructional Method: Lecture
Category: Practitioner

Duration: 5 days

Audience: Manager

Point of Contact: HQ
Description: This is a five-day management course covering projects that have software as a component. This course is NOT targeted at software engineers, but at managers.

Specific topics include uniqueness of software engineering/management, selecting software contractors, planning software projects, verification, validation and testing, selecting software development models, reviewing software maintenance and design code, estimating schedule and cost, selecting software metrics, determining user requirements, critiquing software documentation.

4.2. SPMN

4.2.1.
Contracting for Software

Instructional Method: lecture, guided discussion and video
Category: Overview

Duration: .5 day

Audience: Manager, Developer, and Assurance Engineers
Description: Presents the software-specific considerations of RFPs, SOWs, CDRLs and contracts, particularly Government contracts. At the end of this course participants should be able to:

· Explain the contracting process as it applies to software and software-intensive systems

· Explain and address the unique requirements, issues and risks associated with software systems contracts

· Lead or participate in the planning and implementation of a contract for software or a software-intensive system, including the planning and execution of the RFP process

· Improve the management or administration of an existing software systems contract

4.2.2. Software Test and Integration: DT&E and OT&E

Instructional Method: lecture, guided discussion
Category: Overview

Duration: 2 day

Audience: Manager, Developer, and Assurance Engineers
· Description: Examines the crucial last step of the acquisition process, testing. Covers effective oversight of development test programs, and integration with the operational test program

4.2.3. Advanced Software Engineering Management

Instructional Method: 19 modular workshops using lecture, video, guided discussion, and case study

Category: Practitioner

Duration: 12 days

Audience: Manager

Description: A comprehensive and intensive course which provides in-depth coverage of military and commercial, standards, practices, methodologies and techniques necessary for planning and managing large-scale software acquisition and development projects. The focus is on the elimination of cost and schedule overruns through the identification and management of program risks, and an emphasis on Software Best Practices. At the end of this course participants should be able to plan and implement software acquisition and development programs which meet cost, schedule and technical performance targets.

4.3. STI

None

4.4. SEI

4.4.1. Introduction to the Software Acquisition Capability Maturity Model

Instructional Method: course lectures supplemented with discussions and exercises
Category: Practitioner

Duration: two days

Audience: Manager
Description: Designed to give participants an overview of the SA-CMM and its fundamental concepts. The course is based on Version 1.01 of the model and centers around the five maturity levels of the model and their characteristic key process areas (KPAs). Course discussions and exercises are designed to give participants a basic understanding of the principles and activities of the SA-CMM and to show how use of this structured approach to process improvement can be applied to a variety of acquisition activities in government and industry.

4.5. SPC

None

5. Software Configuration Management (L2 KPA)

5.1. NASA:

5.1.1. Configuration Management
Instructional Method: Web-based
Category: Overview

Duration: 2 hours

Audience: Assurance Engineer

Point of Contact: Code Q

Description: Provides the student a general understanding of the configuration management function and provides an in-plant perspective of the configuration management process. It addresses the basic requirements of configuration management and general NASA Agency policies related to program/project configuration management. This understanding includes an awareness of the four configuration elements or processes for identifying, controlling, accounting, and verifying program/project requirement baselines throughout the item's life cycle. The engineering change process is discussed to include a description of the types of engineering changes and the typical, in-plant configuration change control board process. Waivers and deviations will also be addressed. Course Cost: Not Applicable Prerequisite: None

5.2. SPMN

5.2.1. Software Configuration Management and Control: Integrating CM into the Project Environment

Instructional Method: lecture, guided discussion and case studies
Category: Practitioner

Duration: 1.5 days

Audience: Manager, Developer, Assurance Engineer

Description: Presents Configuration Management (CM) as a critical support process, focuses on its information management and control aspects, and shows how to implement CM in software organizations and projects. At the end of this course participants should be able to:

· Explain the information management aspects of CM and the role of CM as a critical engineering management process

· Identify the components of an effective Software CM program

· Lead or participate in the planning and implementation of a Software CM program

· Plan, lead or carry out actions to improve an existing Software CM program

5.3. STI

5.3.1. Practical Implementation of Software Configuration Management

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 4 days

Audience: Manager, Developer, Assurance Engineer
Description: This course focuses on providing participants with practical guidance for implementing detailed procedures that will produce an environment allowing Software Configuration Management principles to function effectively and efficiently. The modular structure of the course facilitates the creation of SCM processes tailored to the specific needs of any given project/program. The application of real project case studies and exercises is utilized to give participants the opportunity to perform several key SCM activities. Participants learn to implement detailed SCM processes, including: defining and establishing detailed SCM functions, writing/implementing procedures and SCM Plans, tailoring the SCM organization to a project/program, designing and using change management forms, and auditing existing procedures and requirements.

5.3.2. Software Configuration Management - A Management Overview

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Overview
Duration: 4 hours

Audience: Manager, Developer, Assurance Engineer

Description: This course presents a management-level overview of the functions and responsibilities associated with implementing Software Configuration Management processes in a typical project/program environment. Discussions focus on: SCM philosophies, the five major disciplines of SCM, how SCM fits into the operational environment, e.g. libraries, baselines, tools, etc., SEPG and CMM considerations, values added by implementing SCM, and some significant lessons learned.

5.4. SEI

None

5.5. SPC

None

6. Software IV&V

6.1. NASA

6.1.1. S/W Independent Verification and Validation Tutorial

Instructional Method: slide presentation

Category: Overview
Duration: 1.5 hours

Audience:

Point of Contact: ARC

Description: This slide presentation defines software IV&V, describes how an IV&V program is set up, the tasks it performs and the associated reporting mechanisms for its results. In particular, it describes how software IV&V has been set up at the NASA Software IV&V Facility in WV.

6.2. SPMN

6.2.1. Independent Verification and Validation: What Is It and How Is It Done?

Instructional Method: case studies, lecture, and guided discussion

Category: Practitioner

Duration: 1 day

Audience: Manager, Developer, Assurance Engineer

Description: Introduces the rationale and concepts of IV&V programs, and shows managers and engineers how to get the maximum benefit from IV&V. At the end of this course participants should be able to:

· Explain the purpose, benefits, characteristics and applicability of IV&V programs

· Identify the components of an effective IV&V program

· Lead or participate in the planning and implementation of an IV&V program

· Plan, lead or carry out actions to improve an existing IV&V program

· Select and manage an IV&V contractor

· Operate cost-effectively under and benefit from an imposed IV&V process

6.3. STI

6.3.1. Software IV&V.

Instructional Method: lecture, case studies, exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: This course covers the role of verification and validation throughout the software development life cycle. It teaches participants the issues, procedures and present practices for software verification and validation. Case studies and exercises give participants the opportunity to apply the techniques to typical software verification and validation activities. Participants learn to: Plan, organize and manage a V&V program; Understand V&V's role in the software quality assurance process; Assess the need for independent V&V, and Contract for and manage V&V/IV&V programs.

6.4. SEI

None

6.5. SPC

None

7. Software Peer Reviews (L3 KPA)

7.1. NASA

7.1.1. Software Development Formal Inspections

Instructional Method: Lecture

Category: Practitioner

Duration: 1.5 days

Audience: Manager, Developer, Assurance Engineer

Point of Contact: JPL, LaRC, GRC

Description: Formal Inspection (developed by Michael Fagan, IBM) is a technical evaluation method for finding defects in software products such as requirements, design, code, and tests. The objective of Formal Inspections is to increase quality and reduce cost by early detection and removal of defects. Through the use of lecture material, video example, and hands on exercises where students actually participate as inspectors, the students learn to perform effective Formal Inspections.

7.1.2. Executive Briefing on Formal Inspection

Instructional Method: Lecture

Category: Overview
Duration: 2 hours

Audience:

Point of Contact: JPL, LaRC, GRC

Description: The course describes to management: how the process of Formal Inspections (developed by Michael Fagan, IBM) works; how inspections impact schedules and budget; how data from inspections can be used to track project progress; and what additional training is needed for their staff to become proficient in the method.

7.1.3. Formal Inspections for Non-Software Professionals

Instructional Method: Lecture

Category: Practitioner

Duration: 2 hours

Audience: Manager, Developer, Assurance Engineer
Point of Contact: JPL, LaRC, GRC

Description: This class provides an overview of the process and the basic knowledge the students need to participate as an inspector. This class is generally used to train those inspectors that are affiliated with the project but not participating in the actual software development process. The class is usually attended by users of the final product; domain specialists; and representatives from other subsystems that are not software intensive, like electrical, mechanical, thermal or optical, but which have a vested interest in the functionality of the software. These people typically are not interested in using Formal inspections in their particular domain but are willing to assist in the software assurance process.

7.2. SPMN

7.2.1. Defect Tracking: Fagan Inspections and Peer Reviews

Instructional Method: lecture, video, case studies, and guided discussion

Category: Practitioner

Duration: 1.5 days

Audience: Manager, Developer, Assurance Engineer

Description: Shows how to use practical and cost-effective inspection, review and defect tracking techniques to significantly improve software quality. At the end of this course participants will be able to:

· Measure software quality in terms of defects

· Explain how inspection and reviews can improve quality

· Cost-effectively implement inspections and reviews on their project

7.3. STI

None

7.4. SEI

None

7.5. SPC

None

8. Software Process Improvement

8.1. NASA:

8.1.1. Software Process Improvement

Instructional Method:

Category: Practitioner

Duration: 3-5 days

Audience: Manager, Developer, Assurance Engineer

Point of Contact: HQ

Description: Provides technical managers with a background on the NASA software process improvement approach and the activities involved in starting and maintaining a software improvement program. Numerous examples are presented on defining, implementing, and operating such a program, including cost benefit issues and detailed activity charts. Class consists of lectures and interactive workshops. Based on the NASA Software Process Improvement Guidebook. (Planned to start FY96/97)

8.1.2. Software Process Improvement

There are two versions of this course.

8.1.2.A. (4b1). (Agency wide audience).

Instructional Method:

Category: Practitioner

Duration: 4 days

Audience: Manager, Developer, Assurance Engineer

Point of Contact: HQ

Description: Covers the CMM, using the SEL as an example of how to implement the CMM, particularly at levels 4 and 5. Covers goal-question-metric model and its use, measurement of processes, and improvement strategies, based on both the SEI and the SEL material.

8.1.2.B. (4b2). (intact software team).

Instructional Method:

Category: Practitioner

Duration: 4 days

Audience: Manager, Developer, Assurance Engineer

Point of Contact: HQ

Description: A CMM assessment is performed in full view of the team by certified, SEI-trained assessors. Basic SPI course material is presented (without exercises) as in the agency-wide course. A re-assessment is scheduled and performed at a future date as agreed-to by the software team manager. (Note: this course has been offered once in this form with poor results: the software team did not accept the assessment results and refused to make the suggested improvements. No re-assessment was performed.)

8.2. SPMN

8.2.1.
Software Quality Management

Instructional Method: lecture and guided discussion

Category: Practitioner

Duration: 1.5 days

Audience: Manager, Assurance Engineer

Description: Focuses on the reduction of software defects and ultimately costs through the application of the quality disciplines, software quality assurance programs, quality gates, testing and Independent Verification and Validation (IV&V). At the end of this course participants should be able to:

· Explain the relationship between defects, software quality and the software quality disciplines

· Identify the components of an effective Software Quality program

· Lead or participate in the planning and implementation of a Software Quality program

· Plan, lead or carry out actions to improve an existing Software Quality program

8.2.2. Project Planning: Work Definition and Allocation, Estimation, Scheduling, and Earned Value

Instructional Method: lecture, guided discussion, and video

Category: Overview
Duration: 1/2 day; 1 day

Audience: Manager

Description: Shows how to systematically and quantitatively develop Work Breakdown Structures, schedules and cost estimates, and apply earned value techniques in software projects. At the end of this course participants should be able to develop effective project plans by applying the essential quantitative techniques in a systematic and integrated manner.
8.2.3. Metrics and Measures

Instructional Method: lecture, guided discussion, and video

Category: Overview
Duration: 1/2 day

Audience: Manager, Developer

Description: Covers cost, schedule, quality and risk measures, as well as practical measurement programs for software projects. At the end of this course participants should be able to:

· Explain why measures and metrics are important for the planning and management of current and future projects

· Measure all relevant aspects of software projects

· Implement cost effective ways of collecting metrics

· Analyze and interpret metrics

8.2.4. Metrics-Based Scheduling and Management

Instructional Method: lecture, case studies, and guided discussion

Category: Practitioner

Duration: 1 day

Audience: Manager, Developer

Description: Prepares managers and engineers to apply quantitative estimation scheduling and control techniques. At the end of this course participants will be able to:

· Use quantitative techniques to establish and justify realistic and achievable cost estimates, schedules and performance targets

· Monitor progress against quantitative targets

· Take timely corrective action

8.2.5. Project Planning: Work Definition and Allocation, Estimation, Scheduling, and Earned Value

Instructional Method: lecture, guided discussion, and video

Category: Practitioner

Duration: 1/2 day; 1 day

Audience: Manager

Description: Shows how to systematically and quantitatively develop Work Breakdown Structures, schedules and cost estimates, and apply earned value techniques in software projects. At the end of this course participants should be able to develop effective project plans by applying the essential quantitative techniques in a systematic and integrated manner.
8.2.6. The SEI CMM: What Is It?

Instructional Method: lecture, and guided discussion

Category: Overview
Duration: .5 day

Audience: Manager

Description: Provides a management overview of Software Process Improvement and the Software Engineering Institute (SEI) Capability Maturity Model (CMM), and shows how they can be used by software organizations to reduce costs, meet schedules and improve quality. At the end of this course participants should be able to:

· Explain the role of the SEI in Software Process Improvement

· Explain the purpose, characteristics and benefits of Software Process Improvement

· Explain the purpose, benefits and structure of the CMM, and its role in Software Process Improvement

· Explain how Software Process Improvement and the CMM relate to other quality programs, including ISO 9000

· Lead or participate in the planning and implementation of Software Process Improvement based on the CMM in their organization

8.3. STI

8.3.1. ISO 9000 for Software Organizations

Instructional Method: Lecture, guided discussions, examples and exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: This workshop prepares software engineering and software quality

managers and practitioners to meet ISO 9001/9000-3/TickIT software quality

management system standards. The ISO 9000-3 framework for management

responsibility, the quality system, internal audits and specific techniques

that deal with the life cycle and supporting activities are emphasized. The

use of IEEE Software Engineering Standards to provide software specific,

technique oriented procedures for the ISO 9000-3 are demonstrated, and

relationships to other software standards including the Software Engineering

Institute (SEI) Capability Maturity Model are addressed.

8.4. SEI:

8.4.1. Managing Technological Change

Instructional Method: lecture, exercises, and video

Category: Practitioner

Duration: 3.5 days

Audience: Manager

Description: This course provides participants with skills and knowledge that will help them to introduce new technologies or continuous improvement initiatives smoothly and efficiently. During this course, participants learn a structured approach for dealing with the human and organizational aspects of technology transition, including key concepts of change management, communication, and managing resistance.

Course topics include history, transition management, roles, communication, resistance, culture, change agent, planning. Participants will leave the course with tools and approaches that will help them to plan and manage a technology transition effort in their organizations.

8.4.2. Introducing New Software Technology

Instructional Method: workshop, examples, and case studies

Category: Practitioner

Duration: 1-day

Audience: Manager

Description: This workshop is intended to introduce software change agents to the concept that technology transition situations can and should be viewed and managed as a project. This workshop draws heavily on practical experiences introducing technology to support key process areas of the Capability Maturity Model for Software. The workshop provides streamlined, practical guidance for planning the introduction of new software engineering products or technology in organizations.

Participants learn what is needed to guide and facilitate a predictable and systematic change effort that reduces the impact on schedule and productivity and enables easier management of risks caused by new tools or technology. The key activities in software technology introduction are defined and described, with extensive examples and exercises. A case study to consolidate participants’ understanding wraps up the day. After completing the workshop, participants understand the basics of being an effective change agent, including roles and tasks, and can work more effectively and efficiently to plan and manage technology-related change.

8.4.3. Executive Software Process Improvement Overview Seminar

Instructional Method: lecture

Category: Overview
Duration: 1/2 day

Audience: Manager

Description: Focuses on issues for executive decision makers. Topics include SPI background, return on investment experience, a high-level look at the CMM for Software, an introduction to the IDEAL cycle of continuous software process improvement, and tools for implementing SPI.

8.4.4. Personal Software Process Executive Seminar

Instructional Method: lecture

Category: Overview
Duration: 1 Day

Audience: Manager

Description: This is an introduction for software executives and middle managers that cover the key concepts and principles of the PSP from a management perspective. The purpose of this course is to provide the foundation that managers need to begin to introduce and apply the PSP in their organizations.

8.4.5. Personal Software Process Courses

Instructional Method: lecture, guided discussion, exercises

Category: Practitioner

Duration: varies

Audience: Developer

Description: These courses cover the Personal Software Process and quality management methods described in ‘A Discipline for software Engineering’ by Watts Humphrey. The PSP is a defined and measured software process that brings discipline to the practices of individual software engineers. It’s intended use is to guide the planning and development of the component elements of software-intensive systems. The PSP moves process management and control to the level of the individual engineer. It shows engineers how to use their personal data to manage and improve their own processes. This provides better estimates and plans, protection against over commitment, a personal commitment to quality, and the engineers’ involvement in continuous process improvement. The PSP accelerates an organization’s progress toward CMM Level 5, with all the benefits such a capability provides.

Topics covered in PSP for Engineers I / Planning: introduction to PSP, software size measurement, estimating software size, resource and schedule planning and measurements.

Topics covered in PSP for Engineers II / Quality: code reviews, quality management, design notation, design framework, detailed design reviews, cyclic and team processes, process development and using the PSP in an organization.

8.4.6. Consulting Skills Workshop

Instructional Method: lecture, discussion, and case studies

Category: Practitioner

Duration: 4.5 days

Audience: Manager

Description: This workshop provides managers and practitioners responsible for organizational change with a practical, six-phase model for working effectively with client groups – those who implement and are affected by the change. Particular attention is paid to managing expectations among change agents, managers, and other members of the organization.

The class teaches participants to act as internal consultants to their own organizations, working to involve clients in all phases of problem identification and solution. At the end of a consulting assignment, clients are able to sustain the changes in their organizations. Participants learn techniques and methods to use every day, such as forming collaborative working relationships, negotiating roles and expectations with clients, collecting and using data effectively throughout the consultation process, and handling difficult situations that occur when circumstances change in the organization. Course topics include interpersonal styles, a model for consulting, authenticity, client resistance, consulting roles, phase I: entry, sensing, and relationship building; phase II: contracting; phase III: data gathering diagnosis and feedback; phase IV: planning, execution and monitoring; phase V: evaluation and consultant feedback; phase VI: termination; and application.

8.4.7. Introduction to the People Capability Maturity Model

Instructional Method: lecture, guided discussion, group exercises

Category: Practitioner

Duration: 3 days

Audience: Manager

Description: This course provides an understanding of the practices described in the P-CMM framework and how they can be used to improve the workforce management capabilities of an organization. Participants attending this overview course will understand: the P-CMM structure, how to apply the P-CMM framework in different types of organization, how each key process area is designed, how to evaluate whether an organization’s existing workforce practices accomplish the goals of each key process area, how managers and organizations behave at each of the five levels of maturity in the model, and how the P-CMM framework can be used by an organization to evolve its workforce management practices.

8.4.8. Introduction to the Capability Maturity Model for Software

Instructional Method: lecture, guided discussion, group exercises

Category: Practitioner

Duration: 3 days

Audience: Manager

Description: Introduces participants to the SW-CMM. Emphasizes understanding of the five maturity levels and their key process areas (KPAs). Course delivery is through lecture and class exercises with ample opportunity for participant discussions. The class helps prepare participants to make valid judgments regarding an organization’s implementation of the KPA. The course is helpful in identifying issues that should be addressed in performing software process improvement as structured by the SW-CMM. Course topics include: software process maturity and SW-CMM principles, SW-CMM overview, value of the SW-CMM and case studies of software process improvement, levels and key process areas of the SW-CMM, linking the KPAs together and common themes, interpreting the SW-CMM and future directions of the SW-CMM.

8.5. SPC

8.5.1. SPC (CMM) Overview

Instructional Method: video

Category: Overview
Duration: 5 hours, 6 minutes

Audience: Manager, Developer, Assurance Engineer

Description: This course describes the software process maturity framework of five maturity levels, the structural components that comprise the CMM, and how the CMM is used in practice.

Benefits: The attendee will be provided with more effective guidance for establishing process improvement programs.

9. Software Process Measurement

9.1. NASA:

9.1.1. Software Measurement for Practitioners

Instructional Method: lectures and interactive workshops

Category: Practitioner

Duration: 5 days

Audience: Manager, Developer, Assurance Engineer

Point of Contact: GSFC

Description: Provides technical managers and developers managers with a background on the reasons for measurement and the activities involved in establishing and operating a measurement program. Numerous examples are presented based on NASA experience in these areas: setting organizational goals for software; selecting appropriate measures of process and product; organizational roles and responsibilities; cost of a measurement program; and managing through measurement. Based on the NASA Software Measurement Guidebook.

9.2. SPMN

9.2.1. Project Planning: Work Definition and Allocation, Estimation, Scheduling, and Earned Value

Instructional Method: lecture, guided discussion, and video

Category: Practitioner

Duration: 1/2 day; 1 day

Audience: Manager

Description: Shows how to systematically and quantitatively develop Work Breakdown Structures, schedules and cost estimates, and apply earned value techniques in software projects. At the end of this course participants should be able to develop effective project plans by applying the essential quantitative techniques in a systematic and integrated manner.

9.2.2. Metrics-Based Scheduling and Management

Instructional Method: lecture, case studies, and guided discussion

Category: Practitioner

Duration: 1 day

Audience: Manager, Developer

Description: Prepares managers and engineers to apply quantitative estimation, scheduling and control techniques. At the end of this course participants will be able to:

· Use quantitative techniques to establish and justify realistic and achievable cost estimates, schedules and performance targets

· Monitor progress against quantitative targets

Take timely corrective action

9.3. STI

9.3.1. SW Process Measurement

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: This course on the concepts and application of software measurement for engineering and management decisions is concerned with both software development and maintenance. The goal is to help project personnel make better decisions on cost, schedule, and quality trades. The course covers the principles of software measurement, definitions important to software measurement, use of metrics information, statistical foundations of measurement, process maturity and the measurement process, definition of a software metric set, data collection, metrics-based decisions, metrics-based SQA Audits, software measurement toolkit, and measurement standards and the future. Actual project scenarios are discussed including the decisions made, the data collected, and the analysis performed. The course includes several exercises that emphasize the major goals of each section.

9.4. SEI:

9.4.1. Implementing Goal-Driven Software Measurement

Instructional Method: lecture, group exercises, video

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer

Description: For managers and practitioners who want to learn how to define and use goal-driven measures to manage and improve software projects, products, and processes. Participants receive a guidebook – with clearly identified steps and templates – that enables them to use and teach goal-driven software measurement in their own organizations. The course consists of a sequence of mini-tutorials; each supported by examples and team exercises. Participants learn how to identify measurable entities and attributes associated with software products and processes. They also learn and practice team-based methods for defining practical measures for planning, tracking, and improving software projects and activities. In addition, they gain experience in using checklists to define measures in ways that can be clearly understood, repeatedly executed, and explicitly communicated. Graduates will be equipped to start and lead measurement activities in the context of software process improvement programs. Course topics include: decision making with software measurement, identifying business goals, identifying subgoals, identifying what you want to know and learn, Identifying measurable entities and attributes related to subgoals, formalizing measurement goals, identifying quantifiable questions and related indicators that you will use, identifying data elements that you will collect to construct the indicators that help you answer your questions, defining the measures to be used and making these definitions operational, identifying the actions that you will take to implement the measures you have defined, implementing a software measurement process, integrating measurement with software estimating, and the role of measurement in process management and improvement.

9.5. SPC

9.5.1. Overview of Software Measurement and the Capability Maturity Model

Instructional Method: video
Category: Overview
Duration: 2 hours, 49 minutes

Audience:

Description: Overview of example software measures that are related to each of the CMM levels. The course also discusses measuring the progress of process improvement, sizing software with function point analysis, and estimating effort and schedule with COCOMO.

Benefits: The attendees will understand:

· The benefits and issues of software measurements

· Software measurement examples that relate to each of the CMM levels

· How to measure the progress of software process improvement

· The basics of estimating software size with function points

The basics of estimating software effort and schedule with COCOMO

10. Software Product Engineering (L3 KPA)

Note: See also 18

10.1. NASA:

10.1.1. Introduction to Software Engineering

Instructional Method: 2-part seminar

Category: Overview
Duration: 1.5 hours

Audience: Manager, Assurance Engineer

Point of Contact: GSFC

Description: Introducing Software Engineering. Part 1 provides some background and introductory information on software engineering. This part of the seminar provides: a brief history of software engineering, statistics demonstrating common problems with software development, and definitions for the term “Software Engineering.” Additional definitions for different software engineering terms are provided throughout the presentation and a glossary of these terms is provided in the back of your handout to provide a common reference point. Part 2 presents software engineering concepts: the principles, methods & techniques, life-cycle methodologies, processes and tools.

10.1.2. Writing High Quality Requirement Specifications

Instructional Method:

Category: Practitioner

Duration:
Audience: Manager, Developer, Assurance Engineer

Point of Contact: GSFC

Description: This workshop will educate project managers and software developers in effective development of quality requirement specifications. It will also provide them with ideas and methods they can incorporate immediately into their project plan and find a productive return in documentation evaluation and comprehension.
10.1.3. Object Oriented Software Design/Development

Instructional Method: lecture, slides, exercises

Category: Practitioner

Duration: 3 days

Audience:

Point of Contact: JPL

Description: This course provides participants with skills in applying Object Oriented techniques during software requirements and design phases. Object Oriented software development focuses on creating subsystems partitioned on the basis of real world entities, reusable modules, inheritable characteristics, and the combination of data structures and dynamic behavior in a single structure. Modern programming languages (Ada and C++) have constructs that are not adequately addressed by more traditional requirements and design techniques. The Object Modeling Technique (OMT) has been tailored for compliance with JPL's software standards and is presented in form modules:

¨ Introduction to Object Oriented Concepts

¨ Object Oriented Analysis

¨ Object Oriented Design

¨ Detailed Design and Language Issues

These course modules include in-class exercises, standard graphical notation, and discussions of how to transition to Ada or C++ implementation. The Object

Model and Dynamic Models are covered in detail at each level of refinement. The techniques presented are supported by CASE tools from a variety of vendors. Software engineers, system analysts, designers, programmers, managers, and software product assurance personnel would benefit from this course. Knowledge of at least one computer programming language is recommended.

10.1.4. System Requirements (REQ)

Instructional Method:

Category: Practitioner

Duration: 1 week

Audience: Manager, Developer, Assurance Engineer

Point of Contact: GSFC

Description: Purpose: To allow the student to participate in exercises and seminars that span many aspects of systems, focusing on developing high quality system requirements and expressing them as effective system specifications. The ideas, concepts, models, approaches, techniques, and principles for systems specification, as documented by the

leaders in systems, will be presented.

Target Audience: Personnel who are responsible for generating requirements such as engineers, managers, and procurement analysts. GS12-SES

Topics: Eliciting requirements from stakeholders, organizing the requirements, analysis, prototyping, recording and management, and preparing the specification text. Emphasis will be given to management of the requirement team, using a goal centered approach, rather than a technology-centered, time-sequential approach.

From personal experience, this is a great course and covers software requirements as well as providing and excellent methodology for deriving any set of requirements in a complete, verifiable, and reasonable manner.

10.2. SPMN

10.2.1. Software Architecture Requirements: The DII COE and JTA

Instructional Method: lecture, and guided discussion

Category: Practitioner

Duration: 3 day

Audience: Manager, Developer

Description: Provides a comprehensive overview of the Joint Technical Architecture, and its relationship to the TAFIManager, DeveloperII COE and other Service architectures. It also addresses the new OSD Joint Architectural Framework. It thoroughly addresses both management and technical aspects. At the end of this course participants should be able to:

· Explain the purpose and benefits of standard architectures in systems and software acquisition and development

· Identify and determine the applicability of the initiatives, policies and guidelines for standard architectures

· Apply TAFIManager, DeveloperII COE, ATA and JTA in the acquisition and development of weapon systems

10.2.2. Software Requirements Engineering

Instructional Method: lecture and guided discussion

Category: Practitioner

Duration: 1.5 days

Audience: Manager, Developer
Description: Introduces managers, engineers and software specialists to the formal definition, validation and management of software requirements. Requirements Engineering is perhaps the most difficult and critical process in software engineering. All other management and technical activities depend on the complete, accurate and unambiguous definition of system and software requirements. At the end of this course participants will be able to:

· Explain why Requirements Engineering is so difficult and so critical

· Apply a disciplined process and systematic methods to the identification and specification of requirements

· Develop complete, concise, accurate and unambiguous requirements models and specifications

10.2.3. Software Engineering Fundamentals

Instructional Method:

Category: Practitioner

Duration: 5 days

Audience: Manager, Developer, Assurance Engineer

Description: Presents an overview of basic software engineering principles. By the end of the course, participants will:

· Have a working understanding of software terminology and be able to describe their use

· Identify basic systems and software life cycles and their interrelationship

· Understand the software development process

The course is divided into the following three major topic areas:

· An overview of the system life cycle. This block of training sets the stage for the software life cycle and the software development process. It introduces the processes through which a “system” is developed.

· The software life cycle. This training elaborates and refines the concepts developed in the system life cycle and focuses on the software life cycle. Links between the systems and software life cycles are defined and described

The software development process. This topic defines, in detail, the software development phases. Specific examples show how support processes are applied to the development phases and a Case Study shows an example of a “real-world” software system and the applicant’s life cycle data required for certification.

10.2.4. Testing: Evaluating the Product

Instructional Method: case studies, lecture, guided discussion and video

Category: Overview
Duration: .5 day

Audience: Manager, Developer, Assurance Engineer

Description: Presents testing as an integral and ongoing process in system/software development, and shows how to plan and implement a cost-effective integration, test and evaluation program. At the end of this course participants should be able to:

· Explain the role of testing throughout the development process

· Identify the components of an effective Integration, Test and Evaluation program

· Lead or participate in the planning and implementation of an Integration, Test and Evaluation program

· Plan, lead or carry out actions to improve an existing Integration, Test and Evaluation program

10.2.5. Testing: Evaluating the Product

Instructional Method: case studies, lecture, guided discussion and video

Category: Practitioner

Duration: 1 day

Audience: Manager, Developer, Assurance Engineer

Description: Presents testing as an integral and ongoing process in system/software development, and shows how to plan and implement a cost-effective integration, test and evaluation program. At the end of this course participants should be able to:

· Explain the role of testing throughout the development process

· Identify the components of an effective Integration, Test and Evaluation program

· Lead or participate in the planning and implementation of an Integration, Test and Evaluation program

· Plan, lead or carry out actions to improve an existing Integration, Test and Evaluation program

10.3. STI

10.3.1. SW Requirements Management.

Managing Software Requirements - Assuring the Quality of Software Development

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: This course presents the latest techniques to manage software requirements throughout the project life cycle. Participants learn the best approaches for eliminating ambiguity in requirements, avoiding ever-changing requirements, and identifying and dealing with potential "ripple effects" of changing requirements in the design, development and maintenance phases. The practical applications for understanding, analyzing and managing requirement methodologies, tools and environments are illustrated via numerous examples and case studies. Participants learn how object-oriented concepts are applied to software requirements management.

10.3.2. Structured Software Testing

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: This course presents effective and practical approaches to system program testing. A combination of lecture and exercises teaches the participants how to detect the maximum number of defects with an optimum mix of test cases. The course covers testing concepts and planning with an emphasis on the most effective techniques. Other topics addressed are the role of testing in the project life cycle and measurement to support test decision-making. Participants learn: Testing reality, goals and functions; What to test, when to test, and how much to test; To plan, manage, and control the testing process with measurement; To formulate test plans, specifications, and reports.

10.3.3. Software Reuse: Introducing Reuse into Software Development

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: Teaches how to incorporate software reuse as an integral, normal part of software development. During the course, participants learn the answers to the following important reuse questions: How should the software process be changed to enable the practice of reuse? What are the best software development methods to support the practice of reuse? What types of reusable components offer the biggest benefits? How long and how much does it cost to introduce a software reuse program into an organization? How does the software development organization need to be restructured for reuse? How does an organization assess its reuse readiness?

10.4. SEI:

10.4.1. Domain Engineering: A Model-Based Approach

Instructional Method: lecture, guided discussion, exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer

Description: This course provides participants with modeling techniques that enhance their organization’s software reuse capability. The course addresses the technical issues and engineering tradeoffs involved in creating and using reusable software following a model-based approach. This approach produces models of the similarities and differences of components, models of the components, and models of their connectors. It introduces the feature-oriented domain analysis (FODA) method developed at the Software Engineering Institute and shows how it may be used in the domain engineering process. The course also addresses the management and process issues of domain engineering adoption and includes examples of domain engineering approaches. Course topics include: systematic software reuse and domain engineering, domain engineering and other software engineering technologies, phases of the domain engineering process, (i.e. analysis/design/implementation), modeling similarities and differences (domain analysis, i.e. survey of methods/FODA overview/exercise), modeling components and connectors (software architecture) and discussion of domain engineering adoption issues. After completing the course, participants will be able to describe domain engineering in relation to other software engineering technologies, understand the value of domain engineering for their organizations, begin the domain analysis phase of the domain engineering process, and begin preparing for the integration of systematic software reuse into an overall software development and process improvement strategy.

10.5. SPC

10.5.1. Reuse Adoption

Instructional Method: video

Category: Practitioner

Duration: 8 hours, 57 minutes

Audience:
Description: This course helps the attendee understand meeting the “reuse challenge” through a well-defined approach for adoption and institutionalization of software reuse technology to improve productivity, quality, and competitiveness.

 Benefits: The attendee will be able to:

· Assess the current reuse situation

· Develop reuse adoption strategies

· Assess risk and evaluate the economic viability of alternative reuse adoption strategies

Turn a reuse adoption strategy into an action plan

11. SW Project Management

11.1. NASA

11.1.1. Introduction To ISO 9000-1 Quality Management Standards

Instructional Method: lecture and presentation

Category: Practitioner

Duration: 2 days

Audience: Manager, Developer, Assurance Engineer

Point of Contact:

Description: Course Code: A100. Not Software only course. This course introduces the ISO 9000 Standards for the management of processes that affect quality and customer satisfaction. Course completion will equip participants to knowledgeably support implementation of an ISO 9000 Quality Management System. Topics include:

· Understanding What the Standards Say.

· Summarizing the Agency's Plans for ISO 9000.

· How ISO 9000 Provides for Systematically Meeting Customer Quality, Cost and Schedule Requirements.

· Applying The Standards (Small Team Case Studies)

· Tools For Planning And Managing Implementation

11.1.2. Metrics for Quality Assurance and Risk Assessment

Instructional Method: tutorial

Category: Overview
Duration: 3 hour

Audience: Manager, Developer, Assurance Engineer
Point of Contact: GSFC

Description: Provides project managers and software developers with the knowledge to institute an affordable metrics program that will evaluate the quality of their project's products and to help them identify and track project risks. This tutorial will supply both project managers and software developers with knowledge to initiate a metrics program that yields timely, relevant, and usable information at minimal cost, whether traditional functional software development or implementing some new technologies, such as object-oriented, re-engineering, or COTS. The objective is to define metrics that evaluate quality attributes and identify and track project risks. This is an entry level tutorial, the only knowledge needed by participants is a familiarity with software development.

11.2. SPMN

11.2.1. Software Survival Skills for AIS Projects

Instructional Method: lecture, guided discussion and case studies

Category: Practitioner

Duration: 1 day

Audience: Manager, Developer

Description: Makes extensive use of project scenarios based on real cases to demonstrate how to plan and manage Automated Information Systems projects. It covers business management, planning, requirements, tools and methods, CM, testing, quality and risk management. It focuses on the recognition of common problems and the application of proven solutions, but stresses the need to avoid a cookbook approach. At the end of this course participants should be able to:

· Understand and use terminology common to software projects to discuss management issues

· Explain software engineering concepts, processes, practices and standards from a management perspective

· Recognize common problems and pitfalls in projects

· Tailor standard approaches and solutions to their own organization and project

11.2.2. Advanced Software Engineering Management

Instructional Method: 19 modular workshops using lecture, video, guided discussion, and case study

Category: Practitioner

Duration: 12 days

Audience: Manager

Description: A comprehensive and intensive course which provides in-depth coverage of military and commercial, standards, practices, methodologies and techniques necessary for planning and managing large-scale software acquisition and development projects. The focus is on the elimination of cost and schedule overruns through the identification and management of program risks, and an emphasis on Software Best Practices. At the end of this course participants should be able to plan and implement software acquisition and development programs which meet cost, schedule and technical performance targets.

11.2.3. Software Engineering Management

Instructional Method: lecture, video, guided discussion, and case study

Category: Practitioner

Duration: 5 days

Audience: Developer

Description: Provides system developers with an overview of the tools and methods appropriate to development and maintenance of software applications including programming languages, language bindings and object code linking, and Computer Aided Software Engineering (CASE) environments/tools. This course focuses on the application of a systematic, disciplined, and quantifiable approach to the development, operation and maintenance of software. Cultural aspects of software engineering are covered.

11.2.4. Metrics-Based Scheduling and Management

Instructional Method: lecture, case studies, and guided discussion

Category: Practitioner

Duration: 1 day

Audience: Manager, Developer
Description: Prepares managers and engineers to apply quantitative estimation, scheduling and control techniques. At the end of this course participants will be able to:

· Use quantitative techniques to establish and justify realistic and achievable cost estimates, schedules and performance targets

· Monitor progress against quantitative targets

· Take timely corrective action

11.2.5. Project Planning: Work Definition and Allocation, Estimation, Scheduling, and Earned Value

Instructional Method: lecture, guided discussion, and video

Category: Practitioner

Duration: 1/2 day; 1 day

Audience: Manager

Description: Shows how to systematically and quantitatively develop Work Breakdown Structures, schedules and cost estimates, and apply earned value techniques in software projects. At the end of this course participants should be able to develop effective project plans by applying the essential quantitative techniques in a systematic and integrated manner.

11.2.6. Software Project Planning: Earned Value Management

Instructional Method: lecture, case studies, and guided discussion

Category: Practitioner

Duration: 1 day, 2 days

Audience: Developer

Description: Introduces earned value concepts and techniques, and shows how they are used in quantitative cost and schedule management. At the end of this course participants will be able to use Earned Value techniques to:

· Supplement other quantitative techniques during project planning

· Quickly assess the state of large complex projects

· Make problems with budget and schedule visible earlier in the project

11.2.7. Metrics-Based Scheduling and Management

Instructional Method: lecture, case studies, and guided discussion

Category: Practitioner

Duration: 1 day

Audience: Manager, Developer

Description: Prepares managers and engineers to apply quantitative estimation, scheduling and control techniques. At the end of this course participants will be able to:

· Use quantitative techniques to establish and justify realistic and achievable cost estimates, schedules and performance targets

· Monitor progress against quantitative targets

· Take timely corrective action

11.3. STI

11.3.1. Software Project Planning and Management

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: This workshop presents the current issues, procedures, tools and techniques for planning and managing successful software projects. The course discusses the best practices in industry and government for planning and controlling resources, planning and tracking project performance, and interfacing with configuration management and quality assurance functions. The CMM key process areas of software project planning, tracking and oversight are examined, as well as applicable DoD, ISO and IEEE standards and guidelines. Participants learn how to: understand the total software development process, plan for software development and management, establish an effective software development environment, make more accurate cost, schedule and resource estimates, develop reliable software, establish and use effective configuration management procedures, use metrics to objectively measure development status, use reviews and inspections for effective defect prevention, and identify and control risk.

11.4. SEI

None

11.5. SPC

None

12. Software Quality Assurance (L2 KPA)

12.1. NASA

12.1.1. Software Assurance

Instructional Method: Web based (http://solar.msfc.nasa.gov:8018/solar/delivery/disc/sma/public/html/newindex.htm)
Category: Overview
Duration: 3 hours

Audience: Manager, Developer, Assurance Engineer

Description: This training shows the relationship of software to a typical NASA project and its roles in the project. It illustrates the potential impact software errors may have on systems by showing examples from recent history of the real impact of errors. It defines the software development process and products and shows the assurance activities that must be carried out to reduce the risk of errors in the final product. The role of software assurance in software development, acquisition, and maintenance projects will be explained.

Guidance on planning the software assurance program is provided. The roles and responsibilities of all project participants in software assurance are defined. The course describes the detailed software assurance activities and products of each phase of the software life cycle and how they support the software development process. It also explains the relationships of software assurance to other major project functions such as management, verification and validation, and configuration management. It describes the most common software assurance methods, tools and procedures, and how to apply them. Software and system safety, and software quality engineering are also addressed.

12.2. SPMN

12.2.1. Software Quality Management

Instructional Method: lecture and guided discussion

Category: Practitioner

Duration: 1.5 days

Audience: Manager, Assurance Engineer

Description: Focuses on the reduction of software defects and ultimately costs through the application of the quality disciplines, software quality assurance programs, quality gates, testing and Independent Verification and Validation (IV&V). At the end of this course participants should be able to:

· Explain the relationship between defects, software quality and the software quality disciplines

· Identify the components of an effective Software Quality program

· Lead or participate in the planning and implementation of a Software Quality program

Plan, lead or carry out actions to improve an existing Software Quality program

12.3. STI

12.3.1. Software Quality Assurance and Improvement

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: This course familiarizes participants with the evolving role of Software Quality Assurance in an environment of modern software development and support practices. Emphasis is placed on the importance of established software development and support processes, software standards and the implementation of an effective project-oriented tailoring process. The course covers the important issues and recommended procedures, practices and processes for the implementation a Software Quality Assurance Program. During the course, "hands-on" exercises are accomplished; allowing participants to apply the knowledge gained in the course to typical Software Quality Assurance issues.

12.4. SEI

None

12.5. SPC

None

13. Software Reliability

13.1. NASA:

13.1.1. Software Reliability

Instructional Method: tutorial

Category: Practitioner

Duration: 1 day

Audience: Developer, Assurance Engineer
Point of Contact: JPL

Description: This tutorial provides a jump-start to software and system development practitioners who want to apply practical software reliability engineering techniques. Prior knowledge of software reliability engineering is not required. In particular, the tutorial teaches practitioners about the software reliability tools currently available to industry, and the technology behind them. These tools include AT&T Tool Kit, SMERFS, SRMP, SOREL, and CASRE. The tutorial will review software reliability terminology, survey software reliability models (including estimation models and early prediction models), describe various model comparison criteria, introduce the linear combination approach and recalibration approach, discuss practical issues for project application and data collection, and navigate through the software reliability tools using real world project data. For each tool, we will describe the models it implements, its interface style, input/output constraint, model evaluation techniques, and its developers and availability. We will also demonstrate the procedures to open files, edit files, analyze data, apply models, display results, print graphics, and interpret modeling results.

13.2. SPMN

None

13.3. STI

13.3.1. Software Safety and Reliability Workshop

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: Participants in this workshop learn how to establish a successful software safety program. They also acquire an understanding of the engineering practices and techniques used to produce and certify the reliability of safety-critical software. A variety of examples, case studies and exercises reinforce the workshop's instruction material and provide participants with an opportunity to collectively resolve the safety issues of a simulated system development project and to individually practice the software engineering techniques used to assess and enhance the safety and reliability of mission-critical software.

13.4. SEI

None

13.5. SPC

None

14. Software Risk Management

14.1. NASA

14.1.1. Continuous Risk Management: An Overview

Instructional Method:

Category: Overview
Duration: 1/2 -2 hour (tailorable)

Audience: Manager, Developer, Assurance Engineer

Point of Contact: GSFC

Description: This is an introductory course to continuous risk management. The rational for continuous risk management and how it is incorporated into project management are discussed. The steps in the risk management paradigm developed by the Software Engineering Institute are discussed in sufficient depth for managers to understand what is involved in risk management and how it is implemented. Audience: High level management that will not be involved in implementing continuous risk management but must be aware of the process and products. From L. Rosenberg (11/98)

14.1.2. Continuous Risk Management

Instructional Method:

Category: Practitioner

Duration: 1 & 2day

Audience: Manager, Developer, Assurance Engineer

Point of Contact: GSFC

Description: CRM Training is available to NASA and commercial/private industry. The 1-day course is a tutorial on the major elements of CRM and includes a fictitious project case study and several class exercises. This course is for individuals interested in learning the CRM concepts, tools, and processes. The 2-day class incorporates the 1-day course material and finishes with a class workshop focused on the actual project the participants are working on. This course is focused on project teams of 10 or more. There are two Instructors at each session and the class sizes range from ten to sixteen individuals with a maximum of twenty.

14.1.3. Metrics for Quality Assurance and Risk Assessment

Instructional Method:

Category: Overview
Duration: 3.5 hours

Audience: Manager

Point of Contact: GSFC

Description: As the focus on software development turns to “better, cheaper, faster”, program managers and software developers need tools and techniques to evaluate the quality of the resulting products as well as identify potential risks. This tutorial provides project managers and software developers with the knowledge to institute an affordable metrics program that will evaluate the quality of their project’s products and to help them identify and track project risks. A model for developing a software metrics program will be demonstrated, with goals applicable to any project. A core set of relevant quality attributes and metrics are developed for each software development phase. Metrics for evaluating and tracking risks are demonstrated using data from projects at NASA Goddard Space Flight Center (GSFC). Special metrics for object-oriented development, re-engineering, and COTS integration will be discussed. The tutorial will conclude with a discussion on metric program costs, benefits, and techniques for starting a metrics program.

This tutorial will supply both project managers and software developers with knowledge to initiate a metrics program that yields timely, relevant, and usable information at minimal cost, whether traditional functional software development or implementing some new technologies, such as object-oriented, re-engineering, or COTS. The objective is to define metrics that evaluate quality attributes and identify and track project risks. This is an entry level tutorial, the only knowledge needed by participants is a familiarity with software development.

14.2. SPMN

14.2.1. Risk Management and Metrics: An Integrated Approach

Instructional Method: lecture, guided discussion

Category: Overview
Duration: 4 hours

Audience: Manager

Description: Presents the knowledge, techniques and tools necessary to plan and implement a quantitative Risk Management program. At the end of this course participants should be able to:

· Define a quantitative Risk Management process for their organization

· Plan, implement and execute a metrics-based Risk management program

14.2.2. Risk Management and Metrics: An Integrated Approach

Instructional Method: lecture, guided discussion and case study

Category: Practitioner

Duration: 1.5 day

Audience: Manager

Description: Presents the knowledge, techniques and tools necessary to plan and implement a quantitative Risk Management program. At the end of this course participants should be able to:

· Define a quantitative Risk Management process for their organization

· Plan, implement and execute a metrics-based Risk management program

14.2.3. Risk Management and Metrics: An Integrated Approach

Instructional Method: lecture, guided discussion

Category: Practitioner

Duration: 1 day

Audience: Developer

Description: Presents the knowledge, techniques and tools necessary to plan and implement a quantitative Risk Management program. At the end of this course participants should be able to:

· Define a quantitative Risk Management process for their organization

· Plan, implement and execute a metrics-based Risk management program

14.2.4. The Software Project Risk Assessment Process:
Risk Assessment Planning and Execution

Instructional Method: lecture and guided discussion

Category: Practitioner

Duration: 1 day

Audience: Assurance Engineer

Description: Introduces the rationale and concepts of software project assessments; and describes in detail how to plan and conduct an assessment, and to analyze and report the results. Participants learn to identify risks—especially “show stoppers”—that threaten project cost, schedule, resource levels and complexity. At the end of this course participants should be able to:

· Plan and conduct a variety of software project assessments

· Analyze and interpret the results of assessments

14.3. STI

14.3.1. Software Risk Analysis and Management

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 3 days

Audience: Manager, Developer, Assurance Engineer

Description: This course presents the basic principles of risk analysis and management. The introduction covers government and customer requirements and guidelines for establishing a risk management program. A comprehensive approach for establishing a risk management program is presented. Participants learn risk assessment methods, including identification (delineating the risks), analysis (assessing the probabilities and impacts of the risks), and prioritization (ranking the risks). Risk control topics include planning (determining actions to be taken and resources required), resolution (acting to reduce the impacts of negative outcomes), and monitoring (measuring to determine when to take actions). Effective approaches for documenting the risk plans and mitigation activities are discussed.

14.4. SEI:

14.4.1. Continuous Risk Management

Instructional Method: lecture, guided discussion, case study exercises, video

Category: Practitioner

Duration: 3 days

Audience:
Description: This course teaches the continuous risk management practice described in the CRM Guidebook. As well it provides an understanding and practical experience with methods and tools for identifying, analyzing, planning, tracking, controlling, and communicating risks. In this workshop, attendees select some of their projects and apply what they’ve learned to create tailored risk management plans. An extended case study is provided and exercises are used to provide an integrated, consistent view of continuous risk management and how it could be implemented in a typical project. Attendees will work individually and in small groups to complete the exercises.

14.5. SPC

None

15. Software Safety

15.1. NASA:

15.1.1. Software Safety Manager/Overview Course

Instructional Method: Available on PDI Web based training under Mission Assurance, Safety.

Category: Overview
Duration: 1 hour

Audience: Manager, Developer, Assurance Engineer

Description: A one hour course that covers the basics of what software safety is, how it is a part of Systems Safety engineering, it emphasizes the need for Software, system, and safety personnel to work together on determining and mitigating safety critical software, how to scope and manage the risk, and how to incorporate software safety to a project. Discusses software safety analyses and shows examples of software FMEA and a Software Fault Tree Analysis.

15.1.2. Software Safety Practitioner Course

Instructional Method: lecture, slides, exercises

Category: Practitioner

Duration: 4 days

Audience: Developer, Assurance Engineer

Point of Contact: NASA Safety Training Center

Description: Covers: What software safety is, Who is involved and in what role, How to determine safety critical Software, Which approaches and analyses are available and how to use some of them. The course will go into more detail on 3 of the analysis methods that help bring about safer software and thus a safer project/product. Discusses how to categorize software and then to scope and tailor level of effort needed. There are exercises and interactive discussions to get better hands on experience.

15.2. SPMN

15.2.1. Software Safety Process

Instructional Method: lecture, and guided discussion

Category: Practitioner

Duration: 1 day, 1.5 days

Audience: Manager, Developer

Description: Shows how to cost-effectively integrate safety requirements, methods and techniques into the software engineering process. At the end of this course participants should be able to:

· Identify the primary areas of concern in a safety critical environment

· Explain the interdependence of system and software safety

· Identify the components of an effective Software Safety program

· Lead or participate in the planning and implementation of a Software Safety program

· Plan, lead or carry out actions to improve an existing Software Safety program

15.3. STI

None

15.4. SEI

None

15.5. SPC

None

16. S/W Maintenance and Sustaining Engineering

16.1. NASA

None

16.2. SPMI

None

16.3. STI

None

16.4. SEI

None

16.5. SPC

None

17. Software Verification and Validation

17.1. NASA:

17.1.1. The Practical Application of Formal Methods for the Specification, Analysis, and Verification of Software Systems

Instructional Method: lecture, slides, exercises

Category: Practitioner

Duration: 3 days

Audience: Developer, Assurance Engineer

Point of Contact: JPL

Description: This course emphasizes the use of Formal Methods/Analytical Verification (FM/AV) for software requirements and design. Formal models of software systems depend on explicit descriptions of assumptions, constraints, and characteristics of a system toward the goal of reducing reliance on intuition and judgment in evaluating the consistency and correctness of a system's architecture. A primary focus of this course is on the basic FM/AV techniques and strategies. However, the level of formality and rigor used when applying FM/AV can vary greatly, and this implies a wide spectrum of approaches. The choice of particular techniques and strategies is driven by a number of project-specific factors, and the course discusses guidelines for deciding which FM/AV approach should be applied. An introduction to Z, SPIN and PVS are presented in the context of software applications in aerospace. This course complements material found in the NASA Formal Methods Guidebook, vol. 2 (electronically available at http://eis.jpl.nasa.gov/quality/Formal_Methods/)

17.1.2. Formal Methods for Specification of Software and Computer Systems - A Management Overview

Instructional Method: slide presentation

Category: Overview

Duration: 2 hours

Audience: Manager, Developer, Assurance Engineer

Point of Contact: JPL

Description: The course provides information for managers and planners who are interested in the potential use of FM/AV on a project. A basic overview of FM/AV is provided. Additional information includes technical and administrative considerations that must be addressed when transitioning to FM/AV analysis on a project. This course complements material found in the NASA Formal Methods Guidebook, vol. 1 (electronically available at http://eis.jpl.nasa.gov/quality/Formal_Methods/)

17.1.3. PVS Training Class

Instructional Method: slides, exercises

Category: Practitioner

Duration: 3 1/2 days

Audience: Developer

Point of Contact: LaRC

Description: The PVS training course is for professionals interested in learning about formal methods and its mechanization in SRI's PVS language and tools. It is presented at NASA Langley and is designed to accommodate a small number of participants (7-15).

Each day of the course is structured into two classroom sessions 0f approximately three hours each. These sessions consist of both lecture material and hands on exercises with the PVS tools. Several of the sessions are heavily based on sizable examples or

case studies, with modeling and formalization techniques presented in context. The daily format leaves 2-3 hours open for studying examples, solving exercises, and gaining additional practice using the tools.

17.2. SPMI

None

17.3. STI

None

17.4. SEI

17.4.1. None

17.5. SPC

None

18. Systems Engineering

(See also 10)

18.1. NASA

18.1.1. Systems Engineering (SE)

Instructional Method: lecture, slides

Category: Practitioner

Duration: 4 days, 5 days

Audience: Manager, Developer, Assurance Engineer

Point of Contact: HQ

Description: This course describes the process for carrying out systems engineering through a project's life cycle at NASA. The ultimate cost of a project is largely determined by early technical decisions. Poorly founded decisions and unmanaged changes can lead to significant cost and schedule overruns. Proper management of the technical aspects of the project development can avoid these costly practices. This course describes how to implement system engineering management that supports the orderly achievement of project objectives. Sessions are provided at centers where the majority of participants are from the host center; limited space is provided for participants from other centers. The SE course can also be presented at Wallops Flight Facility for groups on special request.

 Who Should Attend: Personnel who are heavily involved in conducting scientific and engineering projects. This course is particularly valuable for engineers or managers who want to learn the system engineering process and gain new skills in the application of techniques and tools to apply the systems approach.

 Length of Course: Four days when held at Wallops Flight Facility. Five days when held at Centers

 Course Highlights: Specific topics include applying the system development cycle, managing requirements, system objectives and changes, performing system design, conducting trade-off analysis, planning verification and validation, managing the technical baseline, implementing traceability and accountability and performing risk and opportunity analysis and management.

18.1.2. Effective Systems Specifications

Instructional Method: HQ-Code FT
Category: Practitioner

Duration: 5 days

Audience: Manager

Point of Contact: HQ
Description: Principles of defining and communicating needs for acquisition of systems. This course allows the student to participate in exercises and seminars that span many aspects of systems, focusing on developing high quality system requirements and expressing them as effective system specifications. The ideas, concepts, models, approaches, techniques, and principles for systems specification, as documented by the leaders in systems, will be presented. These include Andrew Sage, Eberhardt Rechtin, Van Court Hare, John Warfield, Alan Davis, Arthur Hall, James Palmer, Bernhard Thorne, Colin Tully, J. Douglas Hill, Michael Jackson, Walter Fabrocky, John Galbraith, and John Gibson, to cite but a few. The student will focus on each of the stages of the requirements life cycle: elicitation of requirements from stakeholders; organization of the requirements; analysis; prototyping; recording and management, and preparation of the specification text. Emphasis will be given to management of the requirements team, using a goal-centered approach, rather than a technology-centered, time-sequential approach. For engineers GS13+ and management.

18.2. SPMN

18.2.1. Systems Engineering Management

Instructional Method: video, case studies, lecture and guided discussion

Category: Practitioner

Duration: 12 days

Audience: Manager, Developer

Description: A comprehensive course addressing the systems engineering process. It focuses on an orderly analysis process and the relationship between technical management and the systems engineering process. It provides participants with the perspective and background data in systems engineering necessary for effective overall program management.
18.3. STI

18.3.1. Systems Engineering

Instructional Method: Lecture, guided discussion, examples and exercises

Category: Practitioner

Duration: 4 days

Audience: Manager, Developer, Assurance Engineer

Description: This course provides participants with the latest systems engineering methodology for successful definition of system requirements, verification of system design, and proper planning and conduct of system integration and testing. The emphasis is on defining the customer's and user's needs, developing the advanced systems skills to properly analyze and define system requirements, allocating those requirements to produce a system design, defining system and subsystem interfaces, ensuring flow down and traceability of the requirements, and conducting a successful test and integration program. Exercises are structured to develop a "hands-on" working knowledge of the entire system engineering life cycle.

18.4. SEI

None

18.5. SPC

 None

19. Software/Computer Security
19.1. NASA:

19.1.1. Computer Security Training

Instructional Method: lecture, slides

Category: Practitioner

Duration:

Audience: Developer
Point of Contact: JPL

Description: Classes pertaining to specific ITS subjects are conducted when requested by JPL organizations. These classes include subjects such as microcomputer

security and specific protective measures for VMS, PCs, Macintosh and

various UNIX operating systems.

In cooperation with NASA HQ, ITS has developed and conducted several

jointly sponsored seminars and training classes. These have been

incorporated into the NASA training curriculum and have been presented at

several of the NASA centers. The courses are:

1) Managing Security in Systems Acquisition

2) Computer Security

3) Hacker Methods and Countermeasures

4) Security Engineering

5) UNIX Security and Toolkits

6) Windows NT Security

Call the computer security hotline at (818) 354- 8277 to request this service.

Web Reference: http://security.jpl.nasa.gov/

19.2. SPMN

19.2.1. Security in a Software Project Environment

Instructional Method: lecture, and guided discussion

Category: Practitioner

Duration: 1 day

Audience: Manager, Developer

Description: Covers all aspects of the establishment and operation of trusted computer systems for classified projects. At the end of this course participants should be able to:

· Identify and apply DoD security policies, regulations, procedures and guidelines for computer systems

· Lead or participate in the implementation or upgrade of a secure computer system

· Manage or support the operation of a secure computer system

19.3. STI

None

19.4. SEI

None

19.5. SPC

None

19.6. Other

19.6.1. NIST Computer Security Resource Clearinghouse

Web Reference: http://csrc.nist.gov/training/welcome.html

Instructional Method:

Category: Practitioner

Duration: Various

Audience: Developer, Assurance Engineer

Description: Course Material

1994-10-18 Course: Telecommunications for Information Systems Security

Analyst

1996-04-29 Introduction to Computer Security, National Cryptologic School,

(Interactive Courseware Trainee Guide) (formerly, CP-133) (37 zipped files,

DOS program)

Reports:

NTIS Order Number: PB95-130985INT.

Document Type: Technical Report

Personal Authors: Everhart, K.

The training and awareness courses in this compendium correspond to the matrix in NIST Special Publication 500-172, Computer Security Training Guidelines (PB90-780172INT). Special Publication 500-172 is used as reference under the OPM regulation that implements Public Law 100-235, the Computer Security Act of 1987, which requires training for all employees responsible for the management and use of federal computer systems that process sensitive information. Under the regulation, agencies will be responsible for identifying the employee to be trained and providing appropriate training. In addition to the table of contents, which lists the courses, there are four appendices: (1) lists the course by training areas within audience categories as defined in NIST Special Publication 500-172; (2) lists the vendors that participated in this effort; (3) lists the specific products for which training is available; and (4) lists the product specific courses. Performing Organization's Report Number: NISTIR-5495

19.6.2. Computer Security Institute (CSI)

Instructional Method:

Category: Practitioner

Duration: most are 2 days

Audience: Developer, Assurance Engineer

Description: Course descriptions available at: http://www.gocsi.com/wkshop.htm

Or from:

600 Harrison Street,

San Francisco, CA 94107.

Telephone: (415) 905-2626

Fax: (415) 905-2218

Cost: $499 per class federal government rate

Classes:

 1.How to Investigate Computer Crime

 2.Advanced Windows NT Security

 3.How to Develop a Security Training Plan

 4.Comprehensive Intrusion Management

 5.How to Conduct a Network Vulnerability Assessment

 6.Effective Development of Encryption and Certificate Authorities

 7.The NEW Risk Analysis: A Facilitated Approach.

 8.TCP/IP Network Security: Servers and Defenses

 9.Introduction to Computer Security

 10.Windows NT Security.

 11.Essential Network Security for IT Professionals

 12.Rapid Rollout of an Information Security Awareness Program

 13.How to Become a More Effective Information Security Professional

 14.Advanced Unix and Internet Security

 15.Point A to Point Z: A Technical Primer on Data Communications Security

20. Suggestions for Improvements Form

Product Name:
NASA Software Training Course Listing

Product Version Number:
NASA-TM-209370, Version 2.0
NASA Change Request Tracking Number:

Name of Submitting Organization:

Organization Contact:

Telephone:

Mailing Address:
Date:

Short Title:

Change Location Tag
(use section or paragraph #, figure #, key process area ID, practice ID, etc.):

Proposed Change:
Rationale for Change:
Note:
For NASA to take appropriate action on the change request, we must have a clear description of the recommended change along with supporting rationale.

Send US Mail To:

NASA Software Group

C/O NASA IV&V Facility

100 University Drive

Fairmont, WV 26554

Send via Internet Email To:

webdesign@ivv.nasa.gov

_980335524.unknown

