
JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

DS-1 Pilot Implementation of Assertions:
Summary of Lessons Learned

December 19, 1997
Distribution Version

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

2

DS-1 Pilot Implementation of Assertions:
Summary of Lessons Learned

Prepared by:

_______________________________ ________________________________

Robyn R. Lutz Hui-Yin Shaw
Task Lead

Approval:

__________________________ __________________________

Tuyet-Lan Tran John Kelly
Software Assurance Supervisor ATPO Software Applications Program, PEM

December 19, 1997
Distribution Version

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

3

DS-1 Pilot Implementation of Assertions:
Summary of Lessons Learned

Robyn R. Lutz and Hui-Yin Shaw
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

January 28, 1998

1. INTRODUCTION...4
2. DESCRIPTION OF DS-1 IMPLEMENTATION AND RESULTS..4

2.1. SOFTWARE REQUIREMENTS DOCUMENT..4
2.2. SOFTWARE FAULT TREE ANALYSIS..5

2.2.1. IPS Throttle Up..6
2.2.2. SFTA Discussion ...6
2.2.3. Assertion Checking..7
2.2.4. SFTA Study Summary ...8

2.3. FLIGHT RULES ..11
2.4. LISP MODELS...12

3. USES OF ASSERTIONS ..13
3.1. ASSERTIONS AND TEST LOG ANALYSIS ..13
3.2. ASSERTIONS AND INSPECTIONS ..14
3.3. ASSERTIONS AND INTEGRATED MODELING TOOLS...14

4. SUMMARY...15
5. REFERENCES ..15
APPENDIX A. "Assertions: Instrumenting Safety Critical Code for Maintenance"
APPENDIX B. "Safety Analysis of Requirements for a Product Family"

ABSTRACT
This report is an end-item deliverable for the research project "Maintaining Software Safety," funded by
NASA's Office of Safety and Mission Assurance under UPN 323-08-5H. It describes the pilot
implementation of assertions on the Deep Space-1 spacecraft.

The first phase of this RTOP activity culminated in the production of the report, "Assertions: Instrumenting
Safety Critical Code for Maintenance". That report made a case, based on previous studies and industrial
experience, for more widespread use of assertions.

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

4

In the second phase of this activity, reported here, we describe the lessons learned from our experiences
identifying safety assertions on the DS-1 spacecraft for use either as checks embedded in the code or as
predicates for use during test log analysis or integrated modeling. The key sources investigated for the
assertion-identification process were Software Requirements Documents, Software Fault Tree Analysis,
Flight Rules, and Lisp code component models.

1. INTRODUCTION
This report builds on the "how-to" report, "Assertions: Instrumenting Safety Critical Code for
Maintenance," that was delivered in January, 1997, for informal review by NASA engineers (Appendix A).
That report surveyed the literature on assertions, documented the results of previous usage of assertions in
industry, and described how assertions can be used to help maintain software safety.

The pilot implementation of assertions described here draws on that report to explore the sources of
assertions and the uses of assertions in a particular project, the New Millennium Program's Deep Space 1
spacecraft at JPL. An updated version of the report, incorporating feedback from reviewers, is provided in
Appendix A.

Section 2 below describes the lessons learned from our experiences identifying safety assertions on the DS-
1 project. The first focus of the DS-1 implementation was on the sources of assertions. This was chosen as a
focus because the DS-1 project expressed interest in how to best identify potential candidates for assertions
(i.e., sources). Section 2 describes the results of the investigations of the following possible sources of
assertions on DS-1: Software Requirements Documents, Software Fault Tree Analysis, Flight Rules, and
Lisp models.

A second focus of the implementation was on the uses of assertions. This focus evolved during the RTOP
work, as it became clear that many of the same safety properties and many of the same preconditions,
postconditions, and invariants appropriate for insertion in the code as assertions might also be appropriate
for code analysis (e.g., test log analysis) or model testing. Section 3 of the report describes the uses of
assertions, either as checks embedded in the code, as predicates for use during code inspections and test log
analysis, or as input to integrated modeling techniques. Section 3 also provides links to related work at JPL,
ARC, the IV&V Facility, and elsewhere that use assertions.

Appendix A contains the how-to report, "Assertions: Instrumenting Safety Critical Code for Maintenance."
Appendix B is a paper summarizing the results of a joint study with an industrial collaborator (Rockwell
Colllins Avionics) on software safety techniques for a reusable product family.

2. DESCRIPTION OF DS-1 IMPLEMENTATION AND RESULTS

2.1. SOFTWARE REQUIREMENTS DOCUMENT
Sections of the Software Requirements Document for the DCIU (Digital Control Interface Unit) of the XFS
(Xenon Feed System) were investigated as a source of assertions. The DCIU is part of the NSTAR
component of DS-1 which provides ion propulsion. NSTAR is the solar electric propulsion module.

It was found that this Software Requirements Document was a good source of assertions, providing
preconditions, postconditions, and invariants that contributed to the continued safe operation of the Ion
Propulsion System. Some examples of assertions whose source is a Software Requirements Document are:

 1. Preconditions

(a) Reasonableness checks on inputs.
 "Ignore output of drifting pressure transducers."

(b) Requirements on parameters

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

5

 "This procedure shall always be called with the command to operate the thruster at power level
one."

(c) Sequential events
 Cathode conditioning command must always precede thruster ignition command.

 "DCIU shall ensure that stable xenon flow exists prior to commanding on the Neutralizer keeper
power supply.

 2. Postconditions

(a) new-value a function of previous-value
 Temperature is the average of the two temperatures that are closest to the average of the three
input temperatures.

(b) Next-state predicate
 "The DCIU shall enter a known and verifiable state upon Power-On-Reset."

(c) Putative claims: next-state a function of previous-value.
 "If previous temperature in plenum tank exceeds nominal by delta-P, then Latch Vale 3 has been
commanded closed."

 3. Invariants

(a) Watchdog timers
 "A maximum of 10 seconds of anomalous flow conditions are allowed before fault protection is
invoked."

(b) Reachable states
 "In the event of this failure, the Power Processor Unit (PPU) controller shall exit the
conditioning procedure and set a heater failure flag in the PPU telemetry. The decision to set this
flag shall not be made with only zero indicated heater current, an indicated heater voltage in excess
of 9.2 V is also required." (Leaving it unclear what state it's in if current=0 AND voltage <= 9.2)

(c) Predicates on endpoints of an interval
 "When the thruster set-point is being changed, until the new plenum tank pressure has been
reached, the fault protection trigger points shall be changed . . . "

Since the Software Requirement Document was in English, there were also a few errors such as internal
inconsistencies, incomplete requirements, and unclear requirements specifications that had to be resolved
during the process of extracting the potential assertions from the text.

The results of this analysis were consistent with our expectation that a detailed textual description of the
requirements will provide a rich source of useful assertions. The risk in a requirements document as a
source of assertions is that, due to the inadequacies and ambiguities of such a text, incorrect assertions may
be mistakenly extracted. However, we recommend that future projects use software requirements
documents as a baseline source of assertions of required safety properties that (with sufficient review for
correctness) can be inserted in the code.

2.2. SOFTWARE FAULT TREE ANALYSIS
Software Fault Tree Analysis (SFTA) is recommended by Leveson as a possible source of assertions
(Leveson). Consequently, two studies of SFTAs were performed. The first study developed SFTAs of
three hazards on the Cassini spacecraft (Chen-Tsai, et al.). These SFTAs were produced by analysis of the
requirements document and the code.

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

6

These case studies provided a testbed for the hypothesis that the leaf nodes of Software Fault Tree Analyses
are good sources of assertions needed in the code. In these three case studies it was found that SFTA
contributed to the verification effort by identifying code locations for additional exception-handling, but
was not an efficient way to locate assertions for code insertion.

The second study of SFTAs looked at throttling-related requirements on the IPS (Ion Propulsion
Subsystem) component of DS-1. A required safety condition (that proper pressure be achieved before
throttling up began) was identified. The negation of this required safety property then became the root node
hazard ("failure to obtain proper pressure") of the SFTA.

The contributing causes to this hazard were examined to identify whether assertion-checking could provide
some protection against the combination of circumstances producing this hazard. The hazard can be
documented as a comment in order that the safety property will not be accidentally changed as the code is
updated. The results and discussion of this IPS SFTA are presented below.

Appendix B documents the results of a related demonstration of software safety techniques in a distinct
application. The work described there was performed in conjunction with Rockwell Avionics and Iowa
State University. The application domain was a new, modular flight instrumentation architecture for cost-
saving in certified product line reuse. As with DS-1, SFTA was applied to the software requirements. In
addition, SFMEA (Software Failure Modes and Effects Analysis) and a Safety Checklist for use during
requirements inspections of safety-critical software were used in an integrated approach. In both the DS-1
and the flight instrumentation cases, the software safety techniques identified some possible additional
requirements for enhanced fault tolerance.

2.2.1. IPS Throttle Up
The IPS is the NSTAR (NASA Solar Electric Propulsion Technology Applications Readiness) technology
demonstration element on the DS-1 mission. A required safety condition for IPS throttling up was
identified for this study:

“The IPS flight software (FSW) shall ensure that the Xenon Feed System (XFS) pressures are at
the proper throttle level defined in the look up table prior to adjusting other parameters of the
lookup table.” (paragraph 5.22.1.3.1 of ND-302, an equivalent requirement is also found in
paragraph 7.2.4.1 of ND-310)

The negation of this required safety property then became the root node hazard (“XFS pressures not at
proper throttle level before adjusting other parameters at throttle up”) of the SFTA. The fault tree symbols
from MIL-STD-882A as presented in (Leveson and Harvey) were used in this SFTA (see Table 1). Portions
of the source code (May 1997, preliminary version) relating to the throttle logic and the XFS pressures were
reviewed, and the SFTA diagrams were constructed (examples are shown in Figures 1 and 2).

This study modeled the SFTA examples provided in (Leveson and Harvey) and (Leveson, Cha, and
Shimeall). Both of these articles provided failure-mode templates, which were the SFTA structures for
programming language statements (e.g., templates were provided for assignment statements, if-then-else
statements, case statements, etc.). It was found that the use of these templates supported the precision
required for the SFTA task.

The basic procedure for performing SFTA, as stated in (Leveson and Harvey) and (Leveson, Cha, and
Shimeall), is to first identify the failure to be analyzed (the root of the fault tree) and then work backwards,
expanding each subnode, until no further analysis can be performed or a basic fault event is reached (the
leaves). Each subsequent level of the tree subnodes from the root represents the preconditions with the
AND or the OR relationship for the subnode a level above.

2.2.2. SFTA Discussion
In a SFTA diagram, a diamond leaf represents a non-primal event which is not developed further for
insufficient consequences. A circle leaf represents a basic fault event and requires no further analysis. An
oval leaf represents the state (or condition) of the system that permits a fault to occur. A rectangular leaf
represents an event to be analyzed further.

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

7

In this SFTA study, the non-primal events (the diamond leaves) include those that are outside the scope of
this problem statement, or events that are not likely to happen because they are either non-existent in the
source codes or not of concern as result of the development verification process (i.e. faulty command
content can be caught easily during integration testing).

From the SFTA diagrams, we can identify the possible causes to the failure of not having the XFS pressures
at proper throttle level before adjusting other parameters at throttle up. They are the circle, the oval and the
rectangular leaves in the SFTA diagrams (portions of the SFTA result are illustrated in Figures 1 and 2):

1. Bad initial value for power_level (e.g. undefined or corrupted)
2. Corrupted power_level command
3. old power_level data corruption
4. Corrupted previous xfs_control.single_plenum_mode
5. Faulty pressure lookup table (faulty pressure set point)
6. Bad plenum solenoid
7. Faulty plenum transducers
8. Faulty plenum stop_solenoid_valve
9. Faulty plenum transducer algorithm
10. Faulty correct_pressure_required
11. Faulty solenoid_valve_control
12. Faulty leak detection
13. Inappropriate plenum command sent

Items 1 through 5 are caused by data corruptions (e.g., due to space radiation or local memory corruption).
The single-bit event upset due to radiation in space can be corrected with the onboard software for the
single-bit event monitoring and correction. The possibility of local memory corruption can be investigated
but is outside the scope of this exercise. These items are considered basic fault events in this study.

Items 6 and 7 are hardware component failures and are the basic fault events. Items 8 through 12 are
failures caused by faulty values or algorithms which require further analysis. Item 13 identifies the
condition where a fault can be allowed to take place (Inappropriate plenum command sent). An example of
such a condition is the wrongful commanding and execution of a NORMAL_PLENUM command when the
system should be in SINGLE_MAIN or SINGLE_CATHODE mode.

Another concern which did not come from the result of the SFTA work, but was brought to our attention
when reviewing the throttle logic in the code, was the use of power level as synonym to XFS pressures
when determining the throttle mechanism (even though, in normal operation, the XFS pressures are
expected to correlate to the set power level).

2.2.3. Assertion Checking
To identify whether assertion-checking could provide some protection against circumstances producing the
root hazard of this study, two probable causes were studied: inappropriate plenum commanding (a SFTA
leaf from the fault tree analysis) and the possibly erroneous throttle mechanism.

In the inappropriate plenum commanding fault event, there is a concern with the system performing
inappropriate mode change. The software version being studied does not check for the system condition
when processing the plenum mode change command, therefore through the plenum command processing,
the system may be placed in other modes when only SINGLE_MAIN or SINGLE _CATHODE mode is
appropriate. To prevent this from occurring, possible assertion of required precondition can be investigated
for placement in the source code to prevent inappropriate plenum mode change. In the later version of the
IPS software, this anomalous situation is taken care of by the IPS fault protection software.

There is a question about the appropriateness in the use of power level in the throttle mechanism
determination. In throttle mode, the new power level is compared with the previous power level to
determine whether to throttle up or down.

The Throttle Up Requirement (5.22.1.3.1 of ND-302; 7.2.4.1 of ND-310) indicates that plenum pressures
should be adjusted up to new set points prior to adjusting other XFS parameters. The Throttle Down

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

8

Requirement (5.22.1.3.2 of ND-302; 7.2.4.2 of ND-310) indicates that other XFS parameters should be
adjusted prior to adjusting plenum pressures down to new set points. However, in the IPS code, power level
is used as a means to determine the throttle procedure.

Consider the case when the plenum pressure is not at the same set point as prescribed for the power_level
commanded (e.g., due to faulty plenum transducer), and a new power command is such that power_level >
last_power_level. The program will follow the Throttle Up sequence:

1. If the current plenum pressure > new desired plenum pressure, then the software continues
with Throttle Up logic by adjusting plenum pressures down to new desired pressure points,
before adjusting other XFS parameters. This process contradicts the Throttle Up Requirement.

2. If the current plenum pressure < new desired plenum pressure, then the software continues

with Throttle Up logic by adjusting plenum pressures up to new desired pressure points,
before adjusting other XFS parameters. This is consistent with the Throttle Up Requirement.

Similarly, when the plenum pressure is not at the same set point as prescribed for the power_level
commanded, and a new power command is such that power_level < last_power_level, the program will
follow the Throttle Down sequence:

1. If the current plenum pressure > new desired plenum pressure, then the software continues
with Throttle Down logic by adjusting other XFS parameters prior to adjusting the plenum
pressures down to new desired pressure points. This is consistent with the Throttle Down
Requirement.

2. If the current plenum pressure < new desired plenum pressure, then the software continues

with Throttle Down logic by adjusting other XFS parameters prior to adjusting the plenum
pressures up to new desired pressure points. This process contradicts the Throttle Down
Requirement.

The throttle processes identified as contrary to the throttle requirements may pose a potential damaging
effect on the health of the thruster engine. Therefore, either rewrite the throttle logic to include plenum
pressure factor in the throttle process or place exception handling (rather than assertion) in the code to
prevent harm to the thruster engine. An example may be:

case THROTTLE_UP_XFS:
{

IF ((xfs_control.main_pa_measure < xfs_control.main_pa_desired) AND
(xfs_control.cathode_pa_measured < xfs_control.cathode_pa_desired))
THEN … continue with the throttle up process
ELSE … error handling or proceed with throttle down process

}

2.2.4. SFTA Study Summary
In this SFTA study, the possible contributing causes to the root node hazard include data corruption,
hardware faults, algorithmic faults, and a condition in which a failure may occur. One fault event was
identified during the review of the source code logic, but not as the product of the SFTA.

The contributing causes to the root hazard were examined to identify whether assertion-checking could
provide some protection against circumstances producing this hazard. This study found that, with SFTA leaf
nodes, an analyst can easily identify locations in the source code to insert protections. This protection may
most likely be in the form of exception handling, which is more appropriate for spacecraft operations, rather
than assertions. This is the same conclusion as found in the Cassini SFTA studies (Chen-Tsai, et al.).

SFTA can be a helpful technique for conducting safety-critical code review methodologically (it forces a
reviewer to consider every possible fault). The SFTA templates ensure detailed analysis of the root hazard.

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

9

The SFTA process that we performed in this study shared the similar analysis technique with Hart’s Logical
analysis technique (Hart) in which we analyze the code by:

1. focusing on small code segments that are likely to be the root cause of the hazard, rather than
trying to understand the entire program 1,

2. applying analysis to code slices that affect limited number of variables of interests, and
3. focusing on conditional statements (SFTA templates)

We also found that by including assertions as comments in the code (e.g., adding requirement assertions as
comments in code) can facilitate maintenance effort, preserve the safety of the software, and enhance the
safety requirements’ traceability to code.

Table 1. SFTA Symbols

Symbol Usage

Indicates an event to be analyzed further.

Indicates non-primal events which are not developed further for
lack of information or insufficient consequence.

Indicates a condition. It defines the state of the system that
permits a fault sequence to occur.

Indicates a basic fault event or primary failure of a component.
It requires no further development.

O
R

OR gate: indicates that one or more of the input events are
required to produce the gated event

an
d AND gate: indicates that all input events are required in order to

cause the output event

1 Although it is not required to review the whole program source code, but a complete, thorough software
fault tree analysis requires accessibility to all related code modules.

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

10

O
R

Throttle Up mode
causes failure

XFS pressures not at proper throttle level
before adjusting other parameters at throttle

up

IF (last_power_level >
power_level) THEN ...

causes failure

Evaluation of power
level causes failure

Throttle Down mode
causes failure

Throttle up causes
failure

O
R

power_level
is faulty last_power_level

is faulty

O
R

init value is
undefined or

corrupted power level
command is

corrupted

Determining throttle
up or down

See "Throttle up
causes failure" in
Figure 2.

old
power_level

value is
corrupted

old
power_level

value is
corrupted

Not a concern for
this root hazard

Figure 1. Improper XFS Pressures at Throttle Up

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

11

Throttle up causes
failure

or

plenum initialization
causes failure

cathode initialization
causes failure

or

Continued on other
diagrams

faulty XFS
pressures

or

faulty pressure
check

out side the scope of
this exercise

Follows the same logic for
"plenum initialization
causes failure" and is not
repeated here

or

xfs_control.main_pa
_measured is faulty

xfs_control.main_pa
_required is faulty

xfs_run_init causes
failure

out side the scope of
this exercise

faulty main
regulator

check

or

XFS_RUN_
FAIL

or

faulty cathode
regulator

check
 same logic as
"faulty main
regular check", not
repeated here

initialization
timeout causes

failure

XFS_RUN_SINGLE
_CATHODE causes

failure

XFS_RUN_SINGLE
_MAIN causes

failure

or

or

faulty plenum
transducers

or

bad plenum
solenoid

out side the scope of
this exercise

faulty
xfs_control.main_pa

_desired

Note a concern
within this scope

faulty
xfs_control.singl
e_plenum_mode

Continued on other
diagrams

plenum
stop_solenoid_valve

causes failure

solenoid_valve_cont
rol causes failure

faulty plenum
transducer
algorithm

faulty
correct_pressure

_required
algorithm

Figure 2. Failure Caused by Throttle Up

2.3. FLIGHT RULES
We had hoped to capture aspects of the relevant flight rules in assertions. However, this effort turned out to
be premature and more difficult than anticipated. It was premature since few detailed flight rules had yet
been identified for the DCIU/IPS, in part because it was still under development external to JPL. Apart
from this, however, we encountered another difficulty in capturing flight rules in assertions. Our interest in
assertions is in their potential to assure the safety of the system and to maintain that safety across system
updates. To limit risk, we would like to avoid assertions that need to check variables that the software they
are embedded in does not already access (information hiding). Flight rules, however, usually encapsulate
environmental, system, or historical information that a particular software module does not or cannot know.
Thus, flight rules often monitor information that is not accessible to the code in which the proposed
assertions would be placed.

For example, one placeholder flight rule that demonstrates both the preliminary nature of the flight rules at
that time in our study and the system knowledge needed by any assertion that checked it is
"IPS_BURN_POINTING." It states, "The following constraints restrict the direction of the IPS thrusting:
1. Geometric constraints (radiation and optics), such as the MICAS IR radiator; 2. Constraints on gimbal
lock coupling (=kinematic amplification factor); 3. Thermal constraints (e.g., PPUs can get hot) (Starbird).
To check these constraints in an assertion would require significant reworking of the existing encapsulation
of information to allow the assertion's code to access data about the current system state. Martin Feather and
Deepak Kulkarni have pointed out that these tradeoffs between the benefits of performing the assertion-
checking and the risks involved in the additional access to non-local data and consequent software coupling
are also key concerns in current testing research.

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

12

To summarize, it appears that some limited aspects of some flight rules (e.g., preconditions to be met before
certain actions are taken autonomously) may be appropriate for capture in assertions, but that many flight
rules are not appropriate sources of assertions in that planning for assertion-checking would drive the
information flow within the code and, hence, require code-restructuring. However, as will be seen below,
flight rules appear to be a fruitful source of assertions used to analyze software test logs.

2.4. LISP MODELS
The Lisp code for a preliminary version (R3) of the IPS (Ion Propulsion System) MIR (Mode Identification
and Recovery) model was examined as a source of safety-related assertions. Chechik and Gannon, in their
COMPASS 96 paper, "Verification of Consistency Between Concurrent Program Designs and Their
Requirements," identify three types of safety properties (Checkik and Gannon). These three types of safety
properties were used as our guideline for the process of searching for useful safety assertions in the Lisp
code.

The first type of safety property is a "reach" property, i.e., that the system can reach a state in which some
property holds. This type of property is used to ensure that invariant properties are not satisfied vacuously.
The second type of safety property is an "invariant" property that holds in every state. The third type of
safety property is "strict cause", meaning that the next transition from each state in which property f1 holds
is to a state in which f2 holds. Chechik and Gannon point out that these three types of properties frequently
appear in requirements documents, providing possible bridges from the requirements to the testing.

The IPS state changes occur, for the most part, in response to inputs from the DCIU (Digital Control
Interface Unit, the microprocessor that controls the Xenon Feed System), informing the IPS of a change in
the DCIU's state. The power status of the DCIU (on or off) and the power status of the IPS PPU-LV and
PPU-HV (the valves are on or off, i.e., powered or not powered) are also factors in the IPS state changes.

The IPS has eight states:
 Off-or-boot
 Booted
 Standby
 Startup
 Steady-state
 Shutdown
 Beam-off
 Hung.

The DCIU has six states that are reported to the IPS:
 boot
 standby
 startup
 steady
 shutdown
 no-command.

The results of the examination of the IPS Lisp code (Nayak) can be summarized as follows:

1. Properties of the first type (reachability) seem to be less appropriate for capture in code assertions and
better checked via other methods (e.g., search of the finite state machine). Examples of properties of the
first type would be to verify that each of the eight possible states listed above is reachable.

2. A property of the second type ("property holds invariantly") is that the IPS must be in one and only one
of the eight states.

Other invariants can be assembled from the models of the states in the Lisp code to check that the behavior
matches the models. For example, "If the power is off, then no command is received" captures the

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

13

requirement that commands cannot be received if the power is off. In the Lisp code this invariant property
forms part of the model for the Off-or-boot state.

3. There are many properties of the third type ("strict cause, i.e., the next transition from each state in
which f1 holds is to a state in which f2 holds") that can be derived from the code, since the Lisp code
provides a model describing each state. An example of a case in which Property f1 holds in more than one
state, but property f2 holds in only one state, for example, is derived from the requirement that only Startup
and Steady-state can transition to Shutdown. One fairly straightforward way to extract these properties
from the code would be to make a SCR-type table of conditions and mark which conditions hold in which
states. Otherwise, it is laborious to cross-check among the different state's conditions.

The effort to define strict cause may also be useful in investigating exactly what the rationale is for
transitions from some states to others. For example, Startup is the next-state only from Steady-state or
Standby. In the Startup state a certain property, call it f2, must hold, according to the model. However, in
trying to define what the property f1 should be, it turns out that there really is no commonality in the
Steady-state and Standby states: it's a one-way street from Standby to Startup, but a two-way street from
Startup to Steady-state. Thus, in this case, there is no "strict cause" property of interest. It is interesting,
however, that the effort to identify the appropriate assertion raised the question of whether a transition from
Startup to Standby was missing.

The following additional possible issues were identified during the process of examining the Lisp code for
candidate safety assertions and were reported back to the project:

a) UNCLEAR. The transition from Standby to Booted is called "Safe", but the transition from Off-or-boot
to Booted is called "Booting."

b) CURRENTLY INCOMPLETE: In this preliminary version, the transitions from Beam Off and from
Hung are not yet defined (unless "persist" is not a self-loop, but is itself an additional state).

c) INCONSISTENT: The documentation says, "If power is cut, the only transition is from standby to off-
or-boot." However, dciu-power-loss in the Booted, Startup, Steady, or Shutdown state also causes a
transition to Off-or-boot.

To summarize, the Lisp models in the IPS code facilitate the extraction of invariant properties and strict-
cause properties (next-state properties). However, a certain amount of "reverse engineering" had to occur to
cross- correlate the relevant properties among the various states. A more structured approach to the
correlation (e.g., using tables such as SCR or AND/OR) would help reduce the effort needed.

3. USES OF ASSERTIONS
This section describes the uses of assertions, other than as checks in the code, including links to the work of
others at JPL, Ames, and the IV&V Facility.

3.1. ASSERTIONS AND TEST LOG ANALYSIS
One unexpected result of our work was the realization that the identification of useful safety-related
assertions and the identification of useful predicates to analyze the test logs produced by the execution of
the code are often very similar. At JPL, Reinholtz and Dvorak have produced an autonomy test tool
(Reinholtz and Dvorak) that expresses constraints upon the state of the system as invariants. The test tool
will confirm that the Boolean expression is true for all observed values of the state during the logged test.
Callahan et al. at the NASA IV&V Facility have done related work in model checking (Callahan,
Easterbrook, and Schneider). Their tool examines the communications between subsystems at their
interfaces to support testing activities. At ARC, Mike Lowry has performed model checking of the core of
DS-1's Executive using predicates drawn from the Flight Rules to verify its correctness, with his results
prompting some change to the Executive.

When Kirk Reinholtz looked at ten sample assertions that we had extracted from the NSTAR requirements
document, he found that five of the ten could easily be represented as predicates for their test tool. The

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

14

other five of the ten assertions could either probably be represented if enough additional details were
provided (e.g., what is meant by a "known and verifiable" state) or could be partially represented (e.g., the
tool can represent that output of the pressure transducers is drifting, but perhaps not the requirement that
such output be ignored). Thus, at least some of the assertions can be checked either in the code or in the
test log analysis.

The testing community, both tool suppliers and researchers, are actively pursuing techniques to incorporate
assertions into testing activities. For example, SunTest, a new division of Sun Microsystems Laboratories,
lists among its tools for testing Java applications, JavaSpec, which is an assertion based API testing tool.
Among researchers, the concept of "perpetual testing," i.e., that software to be maintained properly must be
continually tested, can include the merging of assertions into code (see, e.g,
http://www.ito.darpa.mil/Summaries96/E097--UMass.html).

To summarize, safety assertions to be inserted in the code and predicates to be used in analyzing testing
logs are very similar. This suggests that there is some flexibility in where the assertions are placed (code or
test tool); the important thing is to use them. Future projects may make a decision to allocate some of the
identified assertions to code placement and others to the test tool, depending on the performance overhead
(assertion checking can slow execution), impact on data handling (assertion checking can require additional
access to non-local data), and security concerns (access to the code may be more restrictive than to the test
logs due to reliability concerns).

3.2. ASSERTIONS AND INSPECTIONS
An additional use for assertions that shows promise is for code inspection. Bonnier and Heyer (Bonnier and
Heyer), in trying to account for why the use of assertions in industry has lagged when they are so clearly
one of the keys to safe and correct software, recommend that informal predicates (with formal syntax but an
informal semantics) be used for code inspection. This tends to provide an immediate payback in terms of
enhanced code correctness, which in turn can lead to semi-formal or formal specification of those same or
additional assertions. In addition, assertions can be formulated in terms of higher-level abstract data types
rather than, or in addition to, subsequent low-level implementation invariants. Informal justifications of
why each predicate holds can also be given, providing a valuable knowledge-base for future maintenance of
the software.

The advantage of initiating the use of assertions for code inspection is that it is easy to put into practice
while still allowing for the subsequent automatic derivation of verification conditions from code
annotations. Bonnier and Heyer point out that full formality is not a requirement for the use of assertions.
Matching the method chosen and the level of formality to the project needs appears to be essential in
expanding the use of assertions.

3.3. ASSERTIONS AND INTEGRATED MODELING TOOLS
Blake Marietta and Kulkarni at Ames Research Lab have performed collaborative work with us on
maintaining software safety. Among their results in linked representations to preserve software safety
during maintenance is the extension of a tool to perform feature extraction on C++ code. One of its
capabilities is to automatically extract assertions from commented C++ code. It can document the
assertions in html pages with URL links to relevant documents such as software requirements specifications,
FTAs (Fault Tree Analyses), FMEAs (Failure Modes and Effects Analyses), or PHAs (Preliminary Hazard
Analyses). The user-friendly formats lend themselves to the use of assertions for code reviews (or
inspections, see above) and for supporting the maintenance or revision of safety-related code. The process
of identifying assertions described in Section 2 above can serve as a frontend to this automated software
development tool. See http://grail.arc.nasa.gov/rtops/linked_representations.html for the paper describing
their work.

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

15

4. SUMMARY
In the first phase of this RTOP activity, which culminated in the production of the report, "Assertions:
Instrumenting Safety Critical Code for Maintenance", we made a case, based on previous studies and
experience, for a more widespread use of assertions. In the second phase of this RTOP activity, reported
here, we describe our experiences identifying safety assertions on the DS-1 spacecraft for use either as
checks embedded in the code or as predicates for use during test log analysis. The key sources investigated
for the assertion-identification process were Software Requirements Documents, Software Fault Tree
Analysis, Flight Rules, and Lisp code component models. Besides assertions' well-accepted role as checks
in the code, assertions have been used for analyzing test logs, enhancing code inspections, and supporting
maintenance by means of integrated modeling tools.

Acknowledgments: Thanks to Martin Feather, John Kelly, Sun Matsumoto, Kirk Reinholtz, Doug Bernard,
Guy Man, and Dan Dvorak at JPL; Deepak Kulkarni, Ann Patterson-Hine, Roberta Blake Marietta, and
Mike Lowry at ARC; and Jack Callahan at the IV&V Facility for their shared insights, feedback, and
technical assistance with the DS-1 material.

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to
any specific commercial or noncommercial product, process, or service by name, trademark, manufacturer,
or otherwise, does not constitute or imply its endorsement by the United States Government, the Jet
Propulsion Laboratory, or the California Institute of Technology.

5. REFERENCES

Bonnier, Staaffan and Tim Heyer, "COMPASS: A Comprehensible Assertion Method, TAPSOFT '07:
Theory and Practice of Software Development, Lecture Notes in Computer Science, pp. 803-817. Springer-
Verlag, 1997.

Callahan, John, Steven Easterbrook, and Frank Schneider, "Automated Software Testing Using Model
Checking," Workshop on Living with Inconsistency, International Conference on Software Engineering
(ICSE97), Boston, MA, May, 1997.

Chechik, Marsha and John Gannon, "Verification of Consistency Between Concurrent Program Designs and
Their Requirements," Proceedings of the 11th Annual Conference on Computer Assurance, June 17-21,
1996, NIST, Gaithersburg, MD, pp. 103-116.

Chen-Tsai, Ching; Lee, Susan; Shaw, Hui-Yin; Tran, Tuyet-Lan; and Wang, Monica; “Three Cassini
Software Fault Tree Analyses Case Studies”; Jet Propulsion Laboratory, January 1997.

Hamley, John A., NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) Thruster
Element Technical Requirements Document (TRD), ND-310, JPL D-13638, April 21, 1997.

Hart, Johnson M., “Experience with Logical Code Analysis in Software Reuse and Re-engineering”, A
Collection of Technical Papers: AIAA Computing in Aerospace and Astronautics, March 28-30, 1995, pp.
549-558.

Leveson, Nancy G., Safeware: System Safety and Computers. Addison-Wesley, 1995.

Leveson, Nancy G. and Peter R. Harvey, “Analyzing Software Safety”, IEEE Transactions on Software
Engineering, Vol. SE-9, No. 5, September 1983, pp. 569-579.

Leveson, Nancy G., Stephen S. Cha, and Timothy J. Shimeall, “Safety Verification of Ada Programs Using
Software Fault Trees”, IEEE Software, July 1991, pp. 48-59.

JPL D-15197 http://eis.jpl.nasa.gov/quality/qadc/software.htm

16

Matsumoto, Sun Kang, NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR)
Flight System Software/Fault Protection Requirements, ND-302, JPL, draft version, April 30, 1997.

Nayak, Pandu, MIR Livingstone models.

Reinholtz, Kirk and Dan Dvorak, "The TSTAR Autonomy Test Tool, " submitted for publication, July,
1997.

Starbird, Tom, Flight and Mission Rules, DS-1 internal web page.

APPENDIX A. "Assertions: Instrumenting Safety Critical Code for
Maintenance"

(http://eis.jpl.nasa.gov/quality/qadc/software.htm).

APPENDIX B. "Safety Analysis of Requirements for a Product
Family"

(http://www.cs.iastate.edu/~rlutz/publications/ icre98.ps)

